
Affordable and Practical FPGA-based
Fully Homomorphic Encryption

Rashmi Agrawal

CTO, CipherSonic Labs

rashmi@ciphersoniclabs.io

Presented at NIST WPEC 2024 on September 25

mailto:rashmi@ciphersoniclabs.io

Fully Homomorphic Encryption (FHE)

2

• Allows computations on encrypted data

– Data is encrypted end-to-end

• Allows secure outsourcing of computations on
third-party cloud servers

– Server has no access to the data in plaintext
form

• Allows protection of secret key

– Server has no access to the key

Various FHE Schemes

3

• Binary arithmetic schemes

– Allow operations on bits

– Operations like comparisons are fast

– TFHE, FHEW schemes

• Exact arithmetic schemes

– Allow operations on integers

– Operations like add and multiply are fast

– BGV, BFV schemes

• Approximate arithmetic schemes

– Allow operations on real numbers

• Enabling real-time privacy-preserving applications

– CKKS scheme

Noise, E

The Challenges

4

• Noise growth

– Add doubles the noise

• 𝐸 + 𝐸 = 2𝐸

– Mul squares the noise

• 𝐸 ∗ 𝐸 = 𝐸2

• To tackle noise growth

– Large parameters

• 𝑁 = 217 and log 𝑄 = 2240

– Bootstrapping

• De-noises the ciphertext

The Challenges

5

• Large parameters
– 𝑁 = 217 and log𝑄 = 2240

– Ciphertext size = 73.4 MB

– 40 MB last level cache in commercial systems like CPU/GPU

– Issues:
• Frequent main memory access → Increased main memory bandwidth requirement

• Underutilization of compute resources

• Bootstrapping

– Up to 95% of run time in an application spent in bootstrapping

Compute platform Bootstrapping runtime Speed up

CPU [1] 8.7 minutes -

GPU [2] 1.5 seconds 350x

FPGA [3] 15.6 ms 100x

ASIC [4] 0.39 ms 40x

The Current CKKS Acceleration Efforts

6

• CPU / GPU / FPGA / Hardware

– FPGAs have emerged as one of the viable hardware acceleration platforms

2020 2021 2022 2023 2024

FPGA
HEAX, Riazi et al.

CPU
Non-sparse keys,
Bossuat et al.

GPU
Over 100x, Jung et al.

ASIC
F1, Samardzic et al.

ASIC
1) BTS, Kim et al.
2) CraterLake,

Samardzic et al.
3) ARK, Kim et al.

GPU
GME, Shivdikar et al.

FPGA
1) FAB, Agrawal et al.
2) Poseidon, Yang et al.

ASIC
SHARP, Kim et al.

GPU
Cheddar, Kim et al.

FPGA
HEAP, Agrawal et al.

Hardware Acceleration Efforts

7

Practical
parameters
and
runtime

Improved
throughput

Thousands
of compute
units and
large on-
chip memory

Large chip
area and
cost

Memory-aware Design (MAD) Optimizations

8

• Reduce memory accesses during
KeySwitch operation

• Caching optimizations

– Caching O(1) limbs

• 1 MB on-chip memory

• Compute as much as possible on a
single limb → operation fusing

– Caching O(𝛽) limbs

• Beta sized on-chip memory

– Caching O(𝛼) limbs

• Alpha sized on-chip memory

– Reordering limb computations

• Builds on top of alpha limb caching
optimization

• Reduce number of operations during
bootstrapping

• Algorithmic optimizations

– ModDown merge

• Combining ModDown and Rescale
in multiplication operation

– ModDown hoisting

• Back-to-back rotations without
ModDown

– Key Compression

• Generate pseudorandom
polynomials (half of the key switch
keys) with a PRNG

MAD, MICRO 2023

Improvements

9

• Memory-aware design optimizations help reduce the DRAM transfers and number of
operations

The Need

10

• Affordable

– ASIC solutions are architecturally aggressive → large resources

– Large chips → Expensive → long and painful design efforts

• Practical

– CPU / GPU solutions provide flexibility but are inefficient

• Balanced hardware design

– Compute vs. memory bandwidth

• Easy to deploy

– Readily available inexpensive hardware platform in the cloud environment

• commercial off-the shelf hardware

FAB

11

• A novel FGPA-based accelerator

– Supports practical parameter set → 𝑁 = 216 and log𝑄 = 1728

– Performs first-ever fully-packed bootstrapping implementation on FPGA

• Highly resource efficient

– Leverages 256 functional units with highly FPGA-tailored modular arithmetic units

– Exploits maximal pipelining and parallelism to meet computational demands

• Balanced design with high compute throughput

– Manages limited 43 MB on-chip memory through datapath modification, smart operation
scheduling, on-chip memory management techniques

FAB, HPCA 2023

FAB

12

• Overall architecture
contains four components

– Host CPU

– RTL code

– HBM stacks

– CMAC subsystem

• Mapped on Alveo U280
FPGA accelerator card

• Operating frequency

– 300 MHz

FAB

13

• Performance

– Bootstrapping

• 213x faster than CPU [1]

• 1.5x faster than GPU [2]

– Logistic regression model training

• 456x faster than CPU [1]

• 9.5x faster than GPU [2]

• Performance limited by the performance of bootstrapping

– Too many KeySwitch operations in bootstrapping

– Parallelization is a challenge with inter-limb data dependency

Decomposition

iNTT

NewLimb

NTT

KSKInnerProduct

ModDown

ModUp

Sequence of sub-operations in KeySwitch

Limb-wise

Slot-wise

Limb-wise

1 2 3 4

1 2 3 4

1 2 3 4Limb 1

Limb 2

Limb 3

Slot-wise Interaction
between the limbs makes them hard

to parallelize

HEAP

14

• Parallelizable bootstrapping using
scheme switching

– LWE ciphertexts can be processed
in parallel using TFHE

– Bootstrapping using smaller
parameters 𝑁 = 213

• Main advantage:

– Amount of data read from main
memory is 18x lower

CoeffToSlot

ModRed

SlotToCoeff

RLWE Ciphertext

RLWE Ciphertext

CKKS Bootstrapping

BlindRotate

SampleExt

RePacking

RLWE Ciphertext

RLWE Ciphertext

SampleExt

n LWE Ciphertexts

n RLWE Ciphertexts

n LWE Ciphertexts

Hybrid Bootstrapping

𝑚 = 𝑚𝑜𝑑𝑟𝑒𝑑(𝑚 + 𝑘𝑞)

HEAP, ISCA 2024

HEAP

15

• Scalable bootstrapping accelerator → Multi-FPGA system

– Uses low-latency tightly coupled functional units with fine-grained pipelining

– Implements highly optimized NTT and BlindRotate datapath for highly parallel execution

HEAP

16

• Bootstrapping performance

– In terms of cycle count, HEAP is ~4x faster than ARK and has same performance as SHARP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

GPU [2] GME [5] BTS-2 [6] ARK [7] SHARP [4] FAB [3] HEAP [8]

T
im

e
 (

in
 m

ic
ro

s
e
c
o
n
d
s
)

HEAP

17

• Application performance

– In terms of cycle count, HEAP is 1.56x and 1.23x faster than ARK and SHARP, respectively

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

GME [5] BTS-2 [6] ARK [7] SHARP [4] FAB-2 [3] HEAP [8]

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Logistic Regression Training Per Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GME [5] CL [9] ARK [7] SHARP [4] HEAP [8]

T
im

e
 (

in
 s

e
c
o
n
d
s
)

ResNet-20 Inference

Use Case 1

18

• Money laundering cycle

Collection of
dirty money

Placement
(sneaking dirty money

into a business account)

Dirty money
integrated into local

financial system

Layering
(moving the dirty money
around and mixing with

legitimate money)

Transfer to bank
account of
company X

Offshore bank

Loan to
company Y

Payment by Y out of
false invoice to

company X

Integration
(getting the same dirty
money back legitimately
out of financial system)

Purchase of luxury assets,
vacation, or commercial

investments

Use Case 1

19

• Anti-money laundering using FHE

Local bank Offshore bank

Anti-money
laundering
investigator

Transaction monitoring
using private data

analytics
Joint key generation

and data sharing using
FHE

Transaction monitoring
using private data

analytics

Notification of
suspicious activities

Notification of
suspicious activities

Use Case 2

20

• Architecture of global public health grid

Source: Boston Medical Centre

Regional Health

Information

Organization

Global

Organizations

Consumers

Healthcare

Providers

Public Health

Departments

CDC

FDA

NIH WHO

Public
Health Grid

Hospitals
Labs

Research

Centers

Universities

NGOs

Local Health

Department

Consumer

Orgs
People

Hospitals

Family

Health

Clinics

Security
Services

Alerting
Services

Vocabulary
Services Analytical

Services

Search
Services

TB
Data

Influenza
Data Malaria

Data

SARS
Data

AIDS
Data

Use Case 2

21

• Envisioned architecture of global public health grid

Source: Boston Medical Centre

Regional Health

Information

Organization

Global

Organizations

Consumers

Healthcare

Providers

Public Health

Departments

CDC

FDA

NIH WHO

Public
Health Grid

Hospitals
Labs

Research

Centers

Universities

NGOs

Local Health

Department

Consumer

Orgs
People

Hospitals

Family

Health

Clinics

Security
Services

Alerting
Services

Vocabulary
Services Analytical

Services

Search
Services

TB
Data

Influenza
Data Malaria

Data

SARS
Data

AIDS
Data

Summary

22

• FHE is a plausible way forward for real-world privacy preserving applications

– Helps prevent against data breaches

– Helps meet various data regulations and compliance

• FPGAs provide a sweet spot for FHE acceleration

– Practical performance at a fraction of ASIC cost

– Can be deployed on existing cloud infrastructure using commercial off-the-shelf hardware

• For widespread FHE adoption,

– Standardization of FHE algorithms

– Proven use cases and success stories

– Awareness is essential

References

23

[1] Cheon et al., Bootstrapping for Approximate Homomorphic Encryption, ICTACT, 2018

[2] Jung et al., Over 100x Faster Bootstrapping in Fully Homomorphic Encryption, CHES, 2021

[3] Agrawal et al., FAB: An FPGA-based Bootstrappable Fully Homomorphic Encryption Accelerator,
HPCA, 2023

[4] Kim et al., SHARP: A Short-word Hierarchical Accelerator for Robust and Practical Fully
Homomorphic Encryption , ISCA, 2023

[5] Shivdikar et al., GME: GPU-based Microarchitectural Extensions to Accelerate Homomorphic
Encryption, MICRO, 2023

[6] Kim et al., BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption, ISCA, 2022

[7] Kim et al., ARK: Fully Homomorphic Encryption Accelerator with Runtime Data Generation and
Inter-Operation Key Reuse, MICRO, 2022

[8] Agrawal et al., HEAP: A Fully Homomorphic Encryption Accelerator with Parallelized
Bootstrapping, ISCA, 2024

[9] Samardzic et al., CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on
Encrypted Data, ISCA, 2022

	Slide 1: Affordable and Practical FPGA-based Fully Homomorphic Encryption
	Slide 2: Fully Homomorphic Encryption (FHE)
	Slide 3: Various FHE Schemes
	Slide 4: The Challenges
	Slide 5: The Challenges
	Slide 6: The Current CKKS Acceleration Efforts
	Slide 7: Hardware Acceleration Efforts
	Slide 8: Memory-aware Design (MAD) Optimizations
	Slide 9: Improvements
	Slide 10: The Need
	Slide 11: FAB
	Slide 12: FAB
	Slide 13: FAB
	Slide 14: HEAP
	Slide 15: HEAP
	Slide 16: HEAP
	Slide 17: HEAP
	Slide 18: Use Case 1
	Slide 19: Use Case 1
	Slide 20: Use Case 2
	Slide 21: Use Case 2
	Slide 22: Summary
	Slide 23: References

