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Fully Homomorphic Encryption (FHE)
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• Allows computations on encrypted data

– Data is encrypted end-to-end

• Allows secure outsourcing of computations on 
third-party cloud servers

– Server has no access to the data in plaintext 
form

• Allows protection of secret key

– Server has no access to the key



Various FHE Schemes
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• Binary arithmetic schemes

– Allow operations on bits

– Operations like comparisons are fast

– TFHE, FHEW schemes

• Exact arithmetic schemes

– Allow operations on integers

– Operations like add and multiply are fast

– BGV, BFV schemes

• Approximate arithmetic schemes

– Allow operations on real numbers

• Enabling real-time privacy-preserving applications

– CKKS scheme

Noise, E



The Challenges
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• Noise growth

– Add doubles the noise

• 𝐸 + 𝐸 = 2𝐸

– Mul squares the noise

• 𝐸 ∗ 𝐸 = 𝐸2

• To tackle noise growth

– Large parameters

• 𝑁 = 217 and log 𝑄 = 2240

– Bootstrapping

• De-noises the ciphertext



The Challenges
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• Large parameters
– 𝑁 = 217 and log𝑄 = 2240

– Ciphertext size = 73.4 MB

– 40 MB last level cache in commercial systems like CPU/GPU

– Issues:
• Frequent main memory access → Increased main memory bandwidth requirement

• Underutilization of compute resources

• Bootstrapping

– Up to 95% of run time in an application spent in bootstrapping

Compute platform Bootstrapping runtime Speed up

CPU [1] 8.7 minutes -

GPU [2] 1.5 seconds 350x

FPGA [3] 15.6 ms 100x

ASIC [4] 0.39 ms 40x



The Current CKKS Acceleration Efforts
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• CPU / GPU / FPGA / Hardware

– FPGAs have emerged as one of the viable hardware acceleration platforms 

2020 2021 2022 2023 2024

FPGA
HEAX, Riazi et al.

CPU
Non-sparse keys, 
Bossuat et al.

GPU
Over 100x, Jung et al.

ASIC
F1, Samardzic et al.

ASIC
1) BTS, Kim et al.
2) CraterLake, 

Samardzic et al.
3) ARK, Kim et al.

GPU
GME, Shivdikar et al.

FPGA
1) FAB, Agrawal et al.
2) Poseidon, Yang et al.

ASIC
SHARP, Kim et al.

GPU
Cheddar, Kim et al.

FPGA
HEAP, Agrawal et al.



Hardware Acceleration Efforts
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Practical 
parameters 
and 
runtime 

Improved 
throughput

Thousands 
of compute 
units and 
large on-
chip memory

Large chip 
area and 
cost



Memory-aware Design (MAD) Optimizations
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• Reduce memory accesses during 
KeySwitch operation

• Caching optimizations

– Caching O(1) limbs

• 1 MB on-chip memory

• Compute as much as possible on a 
single limb → operation fusing

– Caching O(𝛽) limbs

• Beta sized on-chip memory

– Caching O(𝛼) limbs

• Alpha sized on-chip memory

– Reordering limb computations

• Builds on top of alpha limb caching 
optimization

• Reduce number of operations during 
bootstrapping

• Algorithmic optimizations

– ModDown merge

• Combining ModDown and Rescale 
in multiplication operation

– ModDown hoisting

• Back-to-back rotations without 
ModDown

– Key Compression

• Generate pseudorandom 
polynomials (half of the key switch 
keys) with a PRNG

MAD, MICRO 2023



Improvements
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• Memory-aware design optimizations help reduce the DRAM transfers and number of 
operations



The Need
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• Affordable

– ASIC solutions are architecturally aggressive → large resources

– Large chips → Expensive → long and painful design efforts

• Practical

– CPU / GPU solutions provide flexibility but are inefficient

• Balanced hardware design

– Compute vs. memory bandwidth

• Easy to deploy

– Readily available inexpensive hardware platform in the cloud environment

• commercial off-the shelf hardware



FAB
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• A novel FGPA-based accelerator

– Supports practical parameter set → 𝑁 = 216 and log𝑄 = 1728

– Performs first-ever fully-packed bootstrapping implementation on FPGA

• Highly resource efficient

– Leverages 256 functional units with highly FPGA-tailored modular arithmetic units

– Exploits maximal pipelining and parallelism to meet computational demands

• Balanced  design with high compute throughput

– Manages limited 43 MB on-chip memory through datapath modification, smart operation 
scheduling, on-chip memory management techniques 

FAB, HPCA 2023



FAB
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• Overall architecture 
contains four components

– Host CPU

– RTL code

– HBM stacks

– CMAC subsystem

• Mapped on Alveo U280 
FPGA accelerator card

• Operating frequency

– 300 MHz



FAB
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• Performance

– Bootstrapping

• 213x faster than CPU [1]

• 1.5x faster than GPU [2]

– Logistic regression model training

• 456x faster than CPU [1]

• 9.5x faster than GPU [2]

• Performance limited by the performance of bootstrapping

– Too many KeySwitch operations in bootstrapping

– Parallelization is a challenge with inter-limb data dependency

Decomposition

iNTT

NewLimb

NTT

KSKInnerProduct

ModDown

ModUp

Sequence of sub-operations in KeySwitch

Limb-wise

Slot-wise

Limb-wise

1 2 3 4

1 2 3 4

1 2 3 4Limb 1

Limb 2

Limb 3

Slot-wise Interaction 
between the limbs makes them hard 

to parallelize



HEAP
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• Parallelizable bootstrapping using 
scheme switching

– LWE ciphertexts can be processed 
in parallel using TFHE

– Bootstrapping using smaller 
parameters 𝑁 = 213

• Main advantage:

– Amount of data read from main 
memory is 18x lower

CoeffToSlot

ModRed

SlotToCoeff

RLWE Ciphertext

RLWE Ciphertext

CKKS Bootstrapping

BlindRotate

SampleExt

RePacking

RLWE Ciphertext

RLWE Ciphertext

SampleExt

n LWE Ciphertexts

n RLWE Ciphertexts

n LWE Ciphertexts

Hybrid Bootstrapping

𝑚 = 𝑚𝑜𝑑𝑟𝑒𝑑(𝑚 + 𝑘𝑞)

HEAP, ISCA 2024



HEAP
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• Scalable bootstrapping accelerator → Multi-FPGA system

– Uses low-latency tightly coupled functional units with fine-grained pipelining

– Implements highly optimized NTT and BlindRotate datapath for highly parallel execution



HEAP
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• Bootstrapping performance

– In terms of cycle count, HEAP is ~4x faster than ARK and has same performance as SHARP
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HEAP
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• Application performance

– In terms of cycle count, HEAP is 1.56x and 1.23x faster than ARK and SHARP, respectively
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Use Case 1
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• Money laundering cycle

Collection of 
dirty money

Placement
(sneaking dirty money 

into a business account)

Dirty money 
integrated into local 

financial system

Layering
(moving the dirty money 
around and mixing with 

legitimate money)

Transfer to bank 
account of 
company X

Offshore bank

Loan to
company Y

Payment by Y out of 
false invoice to 

company X

Integration
(getting the same dirty 
money back legitimately 
out of financial system)

Purchase of luxury assets, 
vacation, or commercial 

investments



Use Case 1
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• Anti-money laundering using FHE

Local bank Offshore bank

Anti-money 
laundering 
investigator

Transaction monitoring 
using private data 

analytics
Joint key generation 

and data sharing using 
FHE

Transaction monitoring 
using private data 

analytics

Notification of 
suspicious activities

Notification of 
suspicious activities



Use Case 2
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• Architecture of global public health grid

Source: Boston Medical Centre
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Use Case 2
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• Envisioned architecture of global public health grid

Source: Boston Medical Centre
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Summary

22

• FHE is a plausible way forward for real-world privacy preserving applications

– Helps prevent against data breaches

– Helps meet various data regulations and compliance

• FPGAs provide a sweet spot for FHE acceleration

– Practical performance at a fraction of ASIC cost

– Can be deployed on existing cloud infrastructure using commercial off-the-shelf hardware

• For widespread FHE adoption,

– Standardization of FHE algorithms

– Proven use cases and success stories

– Awareness is essential
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