Affordable and Practical FPGA-based Fully Homomorphic Encryption

> Rashmi Agrawal CTO, CipherSonic Labs rashmi@ciphersoniclabs.io

Presented at NIST WPEC 2024 on September 25

Fully Homomorphic Encryption (FHE)

- Allows computations on encrypted data
 - Data is encrypted end-to-end
- Allows secure outsourcing of computations on third-party cloud servers
 - Server has no access to the data in plaintext form
- Allows protection of secret key
 - Server has no access to the key

Various FHE Schemes

- Binary arithmetic schemes
 - Allow operations on bits
 - Operations like comparisons are fast
 - TFHE, FHEW schemes
- Exact arithmetic schemes
 - Allow operations on integers
 - Operations like add and multiply are fast
 - BGV, BFV schemes
- Approximate arithmetic schemes
 - Allow operations on real numbers
 - Enabling real-time privacy-preserving applications
 - CKKS scheme

The Challenges

- Noise growth
 - Add doubles the noise
 - E + E = 2E
 - Mul squares the noise
 - $E * E = E^2$
- To tackle noise growth
 - Large parameters
 - $N = 2^{17}$ and $\log Q = 2240$
 - Bootstrapping
 - De-noises the ciphertext

The Challenges

- Large parameters
 - $N = 2^{17}$ and $\log Q = 2240$
 - Ciphertext size = 73.4 MB
 - 40 MB last level cache in commercial systems like CPU/GPU
 - Issues:
 - Frequent main memory access \rightarrow Increased main memory bandwidth requirement
 - Underutilization of compute resources
- Bootstrapping

Compute platform	Bootstrapping runtime	Speed up
CPU [1]	8.7 minutes	-
GPU [2]	1.5 seconds	350x
FPGA [3]	15.6 ms	100x
ASIC [4]	0.39 ms	40x

- Up to 95% of run time in an application spent in bootstrapping

The Current CKKS Acceleration Efforts

- CPU / GPU / FPGA / Hardware
 - FPGAs have emerged as one of the viable hardware acceleration platforms

Hardware Acceleration Efforts

 $\mathsf{throughput} = \frac{n \cdot \log Q_1 \cdot \mathsf{bp}}{\mathsf{brt}}$

Large chip area and cost

Memory-aware Design (MAD) Optimizations

- Reduce memory accesses during KeySwitch operation
- Caching optimizations
 - Caching O(1) limbs
 - 1 MB on-chip memory
 - Compute as much as possible on a single limb → operation fusing
 - Caching $O(\beta)$ limbs
 - Beta sized on-chip memory
 - Caching O(α) limbs
 - Alpha sized on-chip memory
 - Reordering limb computations
 - Builds on top of alpha limb caching optimization

- Reduce number of operations during bootstrapping
- Algorithmic optimizations
 - ModDown merge
 - Combining ModDown and Rescale in multiplication operation
 - ModDown hoisting
 - Back-to-back rotations without
 ModDown
 - Key Compression
 - Generate pseudorandom polynomials (half of the key switch keys) with a PRNG

Improvements

Memory-aware design optimizations help reduce the DRAM transfers and number of operations

The Need

- Affordable
 - ASIC solutions are architecturally aggressive \rightarrow large resources
 - Large chips \rightarrow Expensive \rightarrow long and painful design efforts
- Practical
 - CPU / GPU solutions provide flexibility but are inefficient
- Balanced hardware design
 - Compute vs. memory bandwidth
- Easy to deploy
 - Readily available inexpensive hardware platform in the cloud environment
 - commercial off-the shelf hardware

- A novel FGPA-based accelerator
 - Supports practical parameter set $\rightarrow N = 2^{16}$ and $\log Q = 1728$
 - Performs first-ever fully-packed bootstrapping implementation on FPGA
- Highly resource efficient
 - Leverages 256 functional units with highly FPGA-tailored modular arithmetic units
 - Exploits maximal pipelining and parallelism to meet computational demands
- Balanced design with high compute throughput
 - Manages limited 43 MB on-chip memory through datapath modification, smart operation scheduling, on-chip memory management techniques

- Overall architecture contains four components
 - Host CPU
 - RTL code
 - HBM stacks
 - CMAC subsystem
- Mapped on Alveo U280 FPGA accelerator card
- Operating frequency
 - 300 MHz

FAB

- Performance
 - Bootstrapping
 - 213x faster than CPU [1]
 - 1.5x faster than GPU [2]
 - Logistic regression model training
 - 456x faster than CPU [1]
 - 9.5x faster than GPU [2]
- Performance limited by the performance of bootstrapping
 - Too many KeySwitch operations in bootstrapping
 - Parallelization is a challenge with inter-limb data dependency

HEAP

- Parallelizable bootstrapping using scheme switching
 - LWE ciphertexts can be processed in parallel using TFHE
 - Bootstrapping using smaller parameters $N = 2^{13}$
- Main advantage:
 - Amount of data read from main memory is 18x lower

- Scalable bootstrapping accelerator \rightarrow Multi-FPGA system
 - Uses low-latency tightly coupled functional units with fine-grained pipelining
 - Implements highly optimized NTT and BlindRotate datapath for highly parallel execution

 $T_{\mathbf{Mult},a/\mathsf{slot}}\!:=\!\frac{T_{\mathsf{BS}}\!+\!\sum_{i=1}^{\ell}\!T_{\mathbf{Mult}}(i)}{\ell\!\cdot\!n}$

- Bootstrapping performance
 - In terms of cycle count, HEAP is ~4x faster than ARK and has same performance as SHARP

- Application performance
 - In terms of cycle count, HEAP is 1.56x and 1.23x faster than ARK and SHARP, respectively —

• Anti-money laundering using FHE

Summary

- FHE is a plausible way forward for real-world privacy preserving applications
 - Helps prevent against data breaches
 - Helps meet various data regulations and compliance
- FPGAs provide a sweet spot for FHE acceleration
 - Practical performance at a fraction of ASIC cost
 - Can be deployed on existing cloud infrastructure using commercial off-the-shelf hardware
- For widespread FHE adoption,
 - Standardization of FHE algorithms
 - Proven use cases and success stories
 - Awareness is essential

[1] Cheon et al., Bootstrapping for Approximate Homomorphic Encryption, ICTACT, 2018
[2] Jung et al., Over 100x Faster Bootstrapping in Fully Homomorphic Encryption, CHES, 2021
[3] Agrawal et al., FAB: An FPGA-based Bootstrappable Fully Homomorphic Encryption Accelerator, HPCA, 2023

[4] Kim et al., SHARP: A Short-word Hierarchical Accelerator for Robust and Practical Fully Homomorphic Encryption, ISCA, 2023

[5] Shivdikar et al., GME: GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption, MICRO, 2023

[6] Kim et al., BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption, ISCA, 2022

[7] Kim et al., ARK: Fully Homomorphic Encryption Accelerator with Runtime Data Generation and Inter-Operation Key Reuse, MICRO, 2022

[8] Agrawal et al., HEAP: A Fully Homomorphic Encryption Accelerator with Parallelized Bootstrapping, ISCA, 2024

[9] Samardzic et al., CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data, ISCA, 2022

