
Overview of Fully Homomorphic 
Encryption:

functionality and security models

Daniele Micciancio
(UC San Diego)

Presented at NIST WPEC 2024 on September 25



  

Fully Homomorphic Encryption
● Encryption: used to protect data at rest or in transit

● Fully Homomorphic Encryption: supports arbitrary 
computations (F) on encrypted data
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FHE Timeline
● 1978 – Rivest, Adleman, Dertouzos: 

– pose problem
● 2009 – Gentry: 

– first candidate solution
– bootstrapping technique

● 2011 – Brakerski, Vaikuntanathan:
– first solution based on standard lattice problems

● [BGV12,GHS12,GSW13,AP13/14,DM15,CGGI17,CKKS18,…, 2024]
– new schemes, major efficiency improvements
– Implementations: [SEAL, HElib, PALISADE, OpenFHE, HEAAN, Lol, 

FHEW, TFHE, LattiGo, … ]
– all based on lattices and use bootstrapping technique



  

This talk

● Question: is FHE a good fit for a given application?
● Functionality

– exact vs approximate computations
– composability properties

● Security properties
– passive vs active attacks
– impact of decryption failures

● Advanced properties:
– Verifiability, distributed decryption, etc.



  

FHE vs MPC
● Same problem: secure computation
● MPC (secure Multi Party Computation)

– Data is “secret shared” among partecipants
– Secure computation is done interactively

● FHE (Fully Homomorphic Encryption)
– Data is protected using encryption scheme
– Computation on encrypted data does not require 

interaction
– Decryption key may be “secret shared”

server



  

Use cases for FHE
● Public Key FHE scheme
● Workflow:

– Multiple parties encrypt their data locally, under the same 
public key

– Encrypted data is collected in encrypted form
– Computation is performed on encrypted data
– Final result is decrypted and shared with participants

● Examples:
– Hospitals sharing patient data for join medical study
– Similarly for financial, or other sensitive data



  

Encryption Scheme
● Syntax: (Gen,Enc,Dec)
● Correctness:

– (pk,sk) ← Gen
– Decsk(Encpk(m)) = m

Enc(m)m m
Enc        

 
Dec



  

Fully Homomorphic Encryption
● FHE Scheme: (Gen,Enc,Dec,Eval)

– (pk,sk) ← Gen
– Decsk(Evalpk(F,Encpk(m)) = F(m)
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Enc                 Dec
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Passive attack model
● CPA: Chosen Plaintest Attack
● Adversary (eve) can:

– Choose/influence message m
– See the encryption Enc(m)
– See result of decryption

  Dec(Enc(m))=m
● Still, cannot tell anything about m 

  other than what she already knows
● Security definition applies to FHE
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Active attack model
● CCA: Chosen Ciphertext Attack
● Adversary (eve) can:

– See Enc(m) of any m
– See Dec(c) of any c

● Still, cannot tell anything about m 

  other than what she already knows
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CPA/CCA security in Practice
● Remarks

– Most applications require Active security
– Active security implies Passive security
– Active security can be achieved at reasonable cost 

(e.g., Fujisaki-Okamoto transform)
– Standards (NIST, etc.) require Active security
– All this is for regular (non-homomorphic) encryption

● What about Homomorphic Encryption? 



  

CCA security vs Non-Malleability
● CCA (active) security equivalent to non-malleability

– Given c = Enc(m), adversary cannot compute 
encryption c’ of related message Dec(c’)=F(m)

– Intuition:  If adversary cannot change c into c’, then 
active attack reduces to passive attack

● But this is exactly the opposite of FHE:
– ability to change Enc(m)→Enc(F(m)) is a useful feature!
– FHE is perfectly malleable, and cannot be CCA secure



  

Concrete scenario
● Application:

– Store c = Enc(m) on server
– Server computes c’=Eval(F,c))
– User decrypts final result Dec(c’) = F(m)

● Questions:
– How do you know F was applied on correct c ?
– How do you know the server evaluated the correct F?

● Problem: verifiable FHE
– Can be addressed using zero-knowledge proofs, etc.
– Active research area, but not as mature as basic FHE

● Rest of this talk: focus on passive security

c=Enc(m)

c’=Enc(F(m))



  

Fully Homomorphic Encryption
● FHE Scheme: (Gen,Enc,Dec,Eval)

– (pk,sk) ← Gen
– Decsk(Evalpk(F,Encpk(m)) = F(m)
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Approximate Encryption Scheme
● Decsk(Encpk(m)) = m + ε

● Decsk(Evalpk(f,Encpk(m)) = f(m) + ε
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Why approximate FHE?
● Lattice cryptography (underlying FHE) is noisy:

– In its most basic form Dec’(Enc’(m)) = m + ε
– Solution: use an error correcting code

● Enc(m) = Enc’(encode(m))
● Dec(c) = decode(Dec’(c))
● Dec(Enc(m)) = decode(encode(m)+ε) = m

● In FHE, homomorphic computations increase ε
– Skipping encode/decode makes FHE much faster
– In many applications, approximate results are 

acceptable (e.g., machine learning, statistics, etc.)



  

Approximate FHE
● [CKKS17]: Homomorphic Encryption for 

Arithmetics on Approximate Numbers
– Much more efficient than exact FHE
– Satisfies standard CPA security definition

● Widely implemented and applied to machine 
learning, genome analysis, etc.

● [LM21]: CKKS insecure under passive attacks!



  

Passive attack model
● CPA: Chosen Plaintest Attack
● Adversary (eve) can:

– Choose/influence message m
– See the encryption c = Enc(m)
– See result of decryption Dec(c)

● For exact schemes
–  Dec(c) = m gives no useful information

● For approximate schemes
– Dec(c) = m+ε may leak secret key
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Securing Approximate FHE
● [LM21]: new CPA-D security definition

– Equivalent to CPA for exact schemes
– Captures passive attacks when Dec(c) = m+ε

● [LMSS22]:
– Add extra noise to decryption Dec(c) = Dec’(c)+ε’
– Calibrate ε’  ε≫  to achieve CPA-D security
– Reasonable cost, still more efficient than exact FHE



  

Composability
– c0 = Enc(m)
– c1 = Eval(F,c0)
– c2 = Eval(G,c1)
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Question:  Is Dec(c₂) = g(f(m)) ?

Answer: not necessarily



  

Standard vs Composable FHE
● Standard FHE:       Dec(Eval(F,Enc(m))) = F(m)
● Composable FHE: Dec(Eval(F,c)) = F(Dec(c))
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FHE Taxonomy
● Gentry: historical, but bootstrapping still relevant
● [BGV/BFV]:

– Exact, operates on integer vectors (large message space)
– Slow bootstrapping, but high bandwidth (SIMD)

● [DM/CGGI] (FHEW/TFHE): 
– Exact, fast, composable, single bit  operations
– Active research on SIMD extensions

● [CKKS]:
– Approximate, operates on real vectors (large message space)
– Faster than BGV/BFV at cost of approximate results
– Requires LMSS noise padding to achieve security   



  

Noise estimation / padding
● [LMSS]: securing CKKS requires adding noise

– Dec(c) = Dec’(c) + ε’

● How much noise?
– Larger ε’ gives more security
– Smaller ε’ gives more accurate results
– ε’  ε≫  : should be larger than c’s noise Dec’(c)=m+ε

● Question: how big is ε?



  

Estimating ciphertext noise
● Dec(Enc(m)) = m+ε, for small ε chosen by Enc
● Eval(F,Enc(m)) = F(m) + ε, for larger ε, 

dependent on f
● In (lattice-based) FHE:

– Parameters (encode/decode) should be set large 
enough to correct ciphertext ε noise

– Large ε has negative effect on efficiency
– Even more so for Approximate FHE, which requires 

adding extra ε’  ε≫



  

Application-aware FHE [AAMP24]
● In many applications, 

– function F is fixed, and known in advance
– E.g., common statistics: mean, average, standard 

deviation of encrypted data set
● Good trade-off between security and efficiency:

– Use function F to estimate ciphertext noise ε
– Generate FHE parameters specific to f,ε

● Warning: if c’ = Eval(F’,c) is called with different F’:
– Dec(c’) may be incorrect
– Dec(c’) may leak information about secret key



  

Distributed FHE decryption
● FHE: c=Enc(m) → c’=Enc(F(m))

– both input and output are encrypted
– Good and bad at the same time

● Secret (decryption) key sk:
– Needed to recover final result F(m) = Decsk(c’)
– It also allows to decrypt original input m=Decsk(c)
– Single point of failure

● Solution: secret share sk, and decrypt using MPC



  

Threshold  FHE
● FHE with specialized distributed Dec protocol

– Lattice-based encryption is “key homomorphic”
– Dec’(sk₁+…+skₙ,c) = Dec’(sk₁,c)+...+Dec’(skₙ,c)

● How to share/use secret key sk: 
– Pick random sk₁+…+skₙ such that sk₁+…+sk =skₙ
– Each share holder computes dᵢ=Dec’(skᵢ,c)
– Results are combined into decode(d₁+...+dₙ) = m

● Problem: dᵢ are noisy and may leak information about skᵢ 
● Solution, similar to approx. FHE:

– Add noise Dec(skᵢ,c) = Dec’(skᵢ,c) + εᵢ



  

Concluding Remarks
● Current FHE implementations:

– promising technology, potentially useful in many critical 
applications

– major efficiency gains during the last 15 years
– reasonably efficient to be used in practice

● FHE is a technical tool, to be used with care
– Current schemes target passive security
– Even passive security can already be quite tricky for 

approximate/threshold schemes
– Current FHE research is about much more than just 

efficiency improvements



  

Some References
● [BGV]     https://ia.cr/2011/277
● [DM]       https://ia.cr/2014/816
● [CKKS]   https://ia.cr/2016/421 
● [CGGI]    https://ia.cr/2018/421
● [LM]        https://ia.cr/2020/1533
● [LMSS]   https://ia.cr/2022/816
● [AAMP]   https://ia.cr/2024/203 
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