
Overview of Fully Homomorphic
Encryption:

functionality and security models

Daniele Micciancio
(UC San Diego)

Presented at NIST WPEC 2024 on September 25

Fully Homomorphic Encryption
● Encryption: used to protect data at rest or in transit

● Fully Homomorphic Encryption: supports arbitrary
computations (F) on encrypted data

Enc(m)

Enc(m)
Enc(m)

Enc(m)

Enc(F(m))

FHE Timeline
● 1978 – Rivest, Adleman, Dertouzos:

– pose problem
● 2009 – Gentry:

– first candidate solution
– bootstrapping technique

● 2011 – Brakerski, Vaikuntanathan:
– first solution based on standard lattice problems

● [BGV12,GHS12,GSW13,AP13/14,DM15,CGGI17,CKKS18,…, 2024]
– new schemes, major efficiency improvements
– Implementations: [SEAL, HElib, PALISADE, OpenFHE, HEAAN, Lol,

FHEW, TFHE, LattiGo, …]
– all based on lattices and use bootstrapping technique

This talk

● Question: is FHE a good fit for a given application?
● Functionality

– exact vs approximate computations
– composability properties

● Security properties
– passive vs active attacks
– impact of decryption failures

● Advanced properties:
– Verifiability, distributed decryption, etc.

FHE vs MPC
● Same problem: secure computation
● MPC (secure Multi Party Computation)

– Data is “secret shared” among partecipants
– Secure computation is done interactively

● FHE (Fully Homomorphic Encryption)
– Data is protected using encryption scheme
– Computation on encrypted data does not require

interaction
– Decryption key may be “secret shared”

server

Use cases for FHE
● Public Key FHE scheme
● Workflow:

– Multiple parties encrypt their data locally, under the same
public key

– Encrypted data is collected in encrypted form
– Computation is performed on encrypted data
– Final result is decrypted and shared with participants

● Examples:
– Hospitals sharing patient data for join medical study
– Similarly for financial, or other sensitive data

Encryption Scheme
● Syntax: (Gen,Enc,Dec)
● Correctness:

– (pk,sk) ← Gen
– Decsk(Encpk(m)) = m

Enc(m)m m
Enc

Dec

Fully Homomorphic Encryption
● FHE Scheme: (Gen,Enc,Dec,Eval)

– (pk,sk) ← Gen
– Decsk(Evalpk(F,Encpk(m)) = F(m)

Enc(m) Eval(f,Enc(m))

m f(m)

Eval

Enc Dec

F

Passive attack model
● CPA: Chosen Plaintest Attack
● Adversary (eve) can:

– Choose/influence message m
– See the encryption Enc(m)
– See result of decryption

 Dec(Enc(m))=m
● Still, cannot tell anything about m

 other than what she already knows
● Security definition applies to FHE

Enc(m)Alice Bob

Eve

m

D
ec

(E
nc

(m
))

Active attack model
● CCA: Chosen Ciphertext Attack
● Adversary (eve) can:

– See Enc(m) of any m
– See Dec(c) of any c

● Still, cannot tell anything about m

 other than what she already knows

Alice Bob

Eve

m

D
ec

(c
)

 Enc(m)

 C

CPA/CCA security in Practice
● Remarks

– Most applications require Active security
– Active security implies Passive security
– Active security can be achieved at reasonable cost

(e.g., Fujisaki-Okamoto transform)
– Standards (NIST, etc.) require Active security
– All this is for regular (non-homomorphic) encryption

● What about Homomorphic Encryption?

CCA security vs Non-Malleability
● CCA (active) security equivalent to non-malleability

– Given c = Enc(m), adversary cannot compute
encryption c’ of related message Dec(c’)=F(m)

– Intuition: If adversary cannot change c into c’, then
active attack reduces to passive attack

● But this is exactly the opposite of FHE:
– ability to change Enc(m)→Enc(F(m)) is a useful feature!
– FHE is perfectly malleable, and cannot be CCA secure

Concrete scenario
● Application:

– Store c = Enc(m) on server
– Server computes c’=Eval(F,c))
– User decrypts final result Dec(c’) = F(m)

● Questions:
– How do you know F was applied on correct c ?
– How do you know the server evaluated the correct F?

● Problem: verifiable FHE
– Can be addressed using zero-knowledge proofs, etc.
– Active research area, but not as mature as basic FHE

● Rest of this talk: focus on passive security

c=Enc(m)

c’=Enc(F(m))

Fully Homomorphic Encryption
● FHE Scheme: (Gen,Enc,Dec,Eval)

– (pk,sk) ← Gen
– Decsk(Evalpk(F,Encpk(m)) = F(m)

Enc(m) Eval(F,Enc(m))

m F(m)

Eval

Enc Dec

F

Approximate Encryption Scheme
● Decsk(Encpk(m)) = m + ε

● Decsk(Evalpk(f,Encpk(m)) = f(m) + ε

Enc(m)m m+ε
Enc

Dec

Enc(m) Eval(f,Enc(m))

m f(m)+ε

Eval

Enc Dec
f

Why approximate FHE?
● Lattice cryptography (underlying FHE) is noisy:

– In its most basic form Dec’(Enc’(m)) = m + ε
– Solution: use an error correcting code

● Enc(m) = Enc’(encode(m))
● Dec(c) = decode(Dec’(c))
● Dec(Enc(m)) = decode(encode(m)+ε) = m

● In FHE, homomorphic computations increase ε
– Skipping encode/decode makes FHE much faster
– In many applications, approximate results are

acceptable (e.g., machine learning, statistics, etc.)

Approximate FHE
● [CKKS17]: Homomorphic Encryption for

Arithmetics on Approximate Numbers
– Much more efficient than exact FHE
– Satisfies standard CPA security definition

● Widely implemented and applied to machine
learning, genome analysis, etc.

● [LM21]: CKKS insecure under passive attacks!

Passive attack model
● CPA: Chosen Plaintest Attack
● Adversary (eve) can:

– Choose/influence message m
– See the encryption c = Enc(m)
– See result of decryption Dec(c)

● For exact schemes
– Dec(c) = m gives no useful information

● For approximate schemes
– Dec(c) = m+ε may leak secret key

c=Enc(m)Alice Bob

Eve

m

D
ec

(c
)

Securing Approximate FHE
● [LM21]: new CPA-D security definition

– Equivalent to CPA for exact schemes
– Captures passive attacks when Dec(c) = m+ε

● [LMSS22]:
– Add extra noise to decryption Dec(c) = Dec’(c)+ε’
– Calibrate ε’ ε≫ to achieve CPA-D security
– Reasonable cost, still more efficient than exact FHE

Composability
– c0 = Enc(m)
– c1 = Eval(F,c0)
– c2 = Eval(G,c1)

c0 c1

m F(m)

Eval[f]

Enc Dec

F

c’1 c2

F(m) G(F(m))

Eval[g]

Enc Dec

g

Question: Is Dec(c₂) = g(f(m)) ?

Answer: not necessarily

Standard vs Composable FHE
● Standard FHE: Dec(Eval(F,Enc(m))) = F(m)
● Composable FHE: Dec(Eval(F,c)) = F(Dec(c))

Enc(m) Eval(f,Enc(m))

m f(m)

Eval

Enc Dec

f

c Eval(f,c)

Dec(c) f(Dec(c))

Eval

Dec Dec

f

FHE Taxonomy
● Gentry: historical, but bootstrapping still relevant
● [BGV/BFV]:

– Exact, operates on integer vectors (large message space)
– Slow bootstrapping, but high bandwidth (SIMD)

● [DM/CGGI] (FHEW/TFHE):
– Exact, fast, composable, single bit operations
– Active research on SIMD extensions

● [CKKS]:
– Approximate, operates on real vectors (large message space)
– Faster than BGV/BFV at cost of approximate results
– Requires LMSS noise padding to achieve security

Noise estimation / padding
● [LMSS]: securing CKKS requires adding noise

– Dec(c) = Dec’(c) + ε’

● How much noise?
– Larger ε’ gives more security
– Smaller ε’ gives more accurate results
– ε’ ε≫ : should be larger than c’s noise Dec’(c)=m+ε

● Question: how big is ε?

Estimating ciphertext noise
● Dec(Enc(m)) = m+ε, for small ε chosen by Enc
● Eval(F,Enc(m)) = F(m) + ε, for larger ε,

dependent on f
● In (lattice-based) FHE:

– Parameters (encode/decode) should be set large
enough to correct ciphertext ε noise

– Large ε has negative effect on efficiency
– Even more so for Approximate FHE, which requires

adding extra ε’ ε≫

Application-aware FHE [AAMP24]
● In many applications,

– function F is fixed, and known in advance
– E.g., common statistics: mean, average, standard

deviation of encrypted data set
● Good trade-off between security and efficiency:

– Use function F to estimate ciphertext noise ε
– Generate FHE parameters specific to f,ε

● Warning: if c’ = Eval(F’,c) is called with different F’:
– Dec(c’) may be incorrect
– Dec(c’) may leak information about secret key

Distributed FHE decryption
● FHE: c=Enc(m) → c’=Enc(F(m))

– both input and output are encrypted
– Good and bad at the same time

● Secret (decryption) key sk:
– Needed to recover final result F(m) = Decsk(c’)
– It also allows to decrypt original input m=Decsk(c)
– Single point of failure

● Solution: secret share sk, and decrypt using MPC

Threshold FHE
● FHE with specialized distributed Dec protocol

– Lattice-based encryption is “key homomorphic”
– Dec’(sk₁+…+skₙ,c) = Dec’(sk₁,c)+...+Dec’(skₙ,c)

● How to share/use secret key sk:
– Pick random sk₁+…+skₙ such that sk₁+…+sk =skₙ
– Each share holder computes dᵢ=Dec’(skᵢ,c)
– Results are combined into decode(d₁+...+dₙ) = m

● Problem: dᵢ are noisy and may leak information about skᵢ
● Solution, similar to approx. FHE:

– Add noise Dec(skᵢ,c) = Dec’(skᵢ,c) + εᵢ

Concluding Remarks
● Current FHE implementations:

– promising technology, potentially useful in many critical
applications

– major efficiency gains during the last 15 years
– reasonably efficient to be used in practice

● FHE is a technical tool, to be used with care
– Current schemes target passive security
– Even passive security can already be quite tricky for

approximate/threshold schemes
– Current FHE research is about much more than just

efficiency improvements

Some References
● [BGV] https://ia.cr/2011/277
● [DM] https://ia.cr/2014/816
● [CKKS] https://ia.cr/2016/421
● [CGGI] https://ia.cr/2018/421
● [LM] https://ia.cr/2020/1533
● [LMSS] https://ia.cr/2022/816
● [AAMP] https://ia.cr/2024/203

https://ia.cr/2011/277
https://ia.cr/2014/816
https://ia.cr/2016/421
https://ia.cr/2018/421
https://ia.cr/2020/1533
https://ia.cr/2022/816
https://ia.cr/2024/203

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

