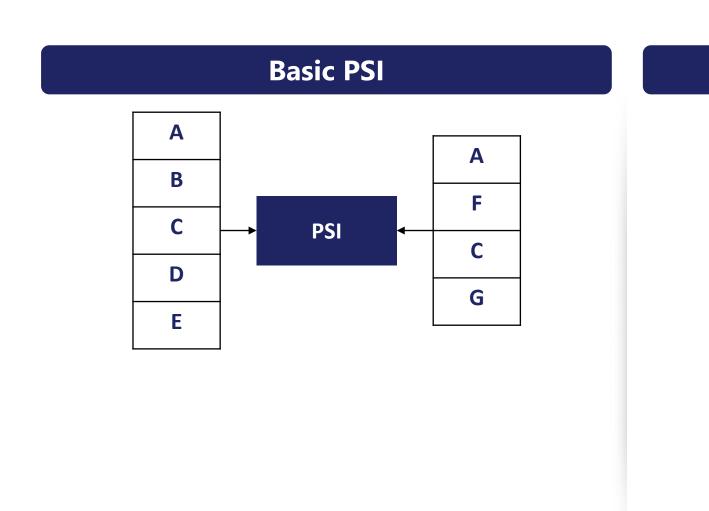
Circuit-PSI & Applications

Kyoohyung Han¹, **Seongkwang Kim¹**, Byeonghak Lee¹, Yongha Son²

¹ Samsung SDS

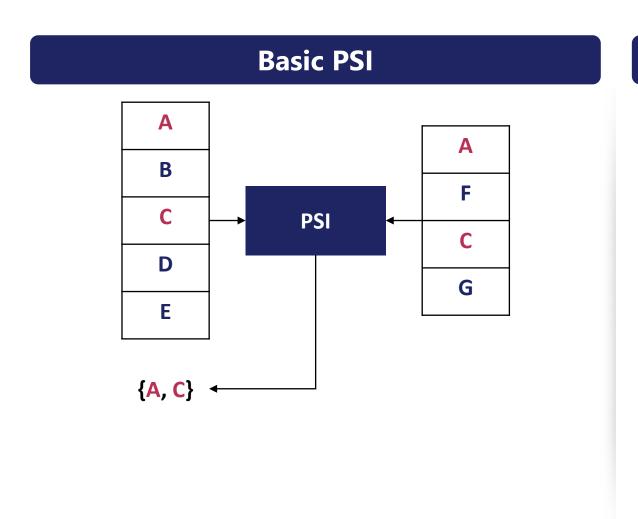
² Sungshin Women's University

Sep. 24. 2024



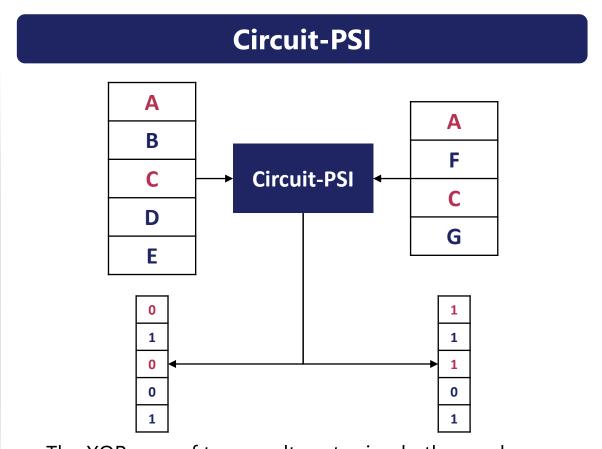
I. Circuit-PSI

Each parties may not want to reveal the intersection itself


Basic PSI Circuit-PSI

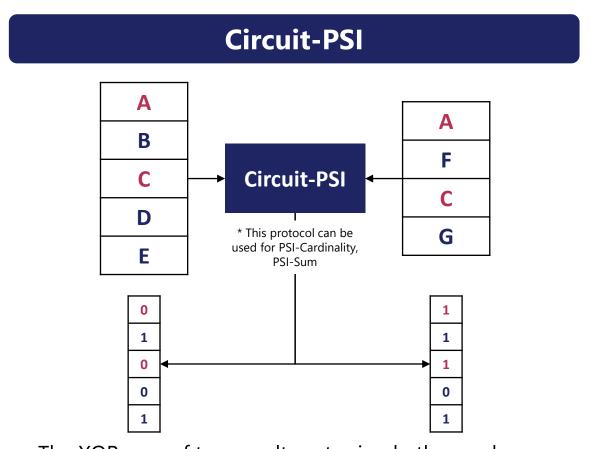
Each parties may not want to reveal the intersection itself

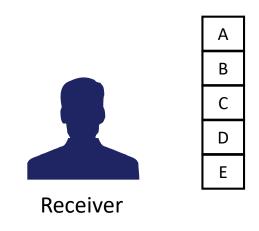
Circuit-PSI

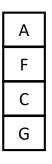

Each parties may not want to reveal the intersection itself

Circuit-PSI

Each parties may not want to reveal the intersection itself


Basic PSI A B F **PSI** C D G E **{A, C}**


• The XOR sum of two result vector is whether each element is in the other party's set of not


Each parties may not want to reveal the intersection itself

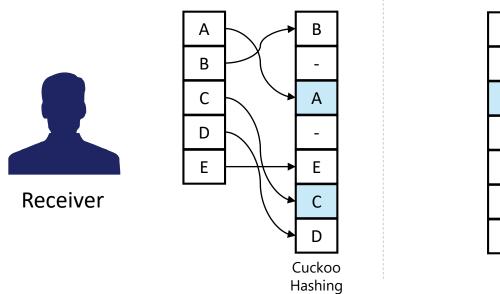
Basic PSI A B F **PSI** C D G E {A, C}

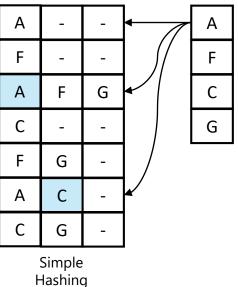
• The XOR sum of two result vector is whether each element is in the other party's set of not

The circuit-PSI protocol consists of Cuckoo hashing, Oblivious PRF

Step1. Cuckoo Hashing A B C D E Receiver

The circuit-PSI protocol consists of Cuckoo hashing, Oblivious PRF

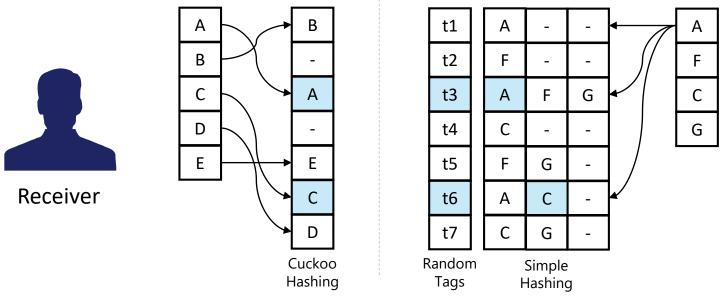

Step1. Cuckoo Hashing Α C G D Ε Sender Receiver Cuckoo Hashing


The receiver compute Cuckoo hash table, and the sender

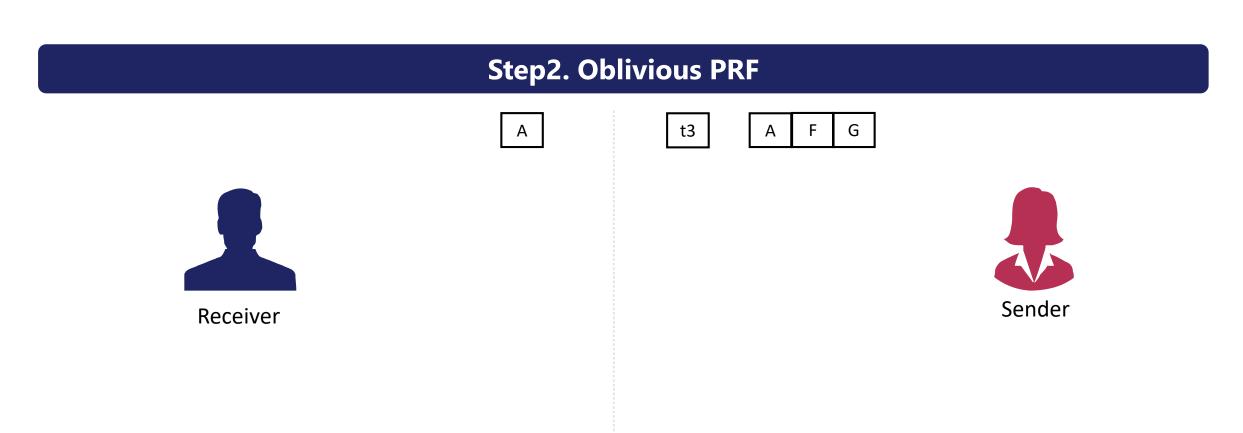
compute Simple hash table

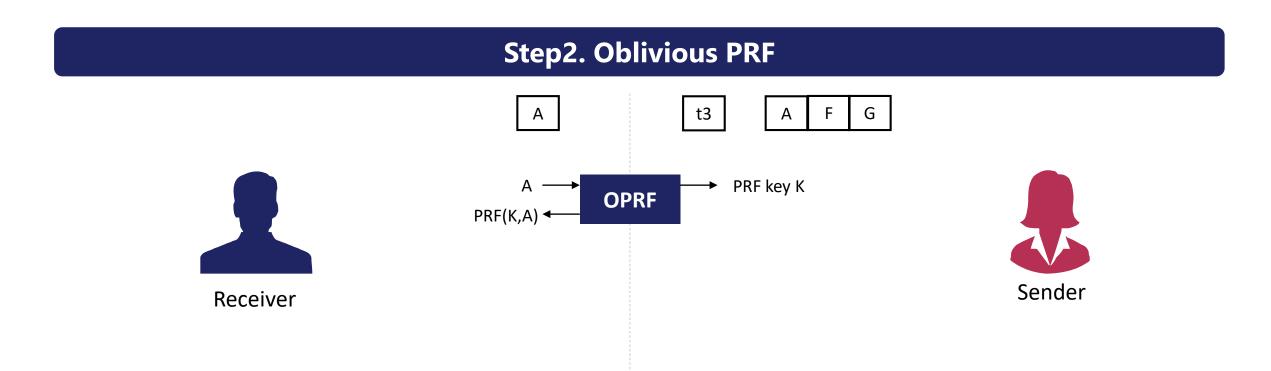
The circuit-PSI protocol consists of Cuckoo hashing, Oblivious PRF

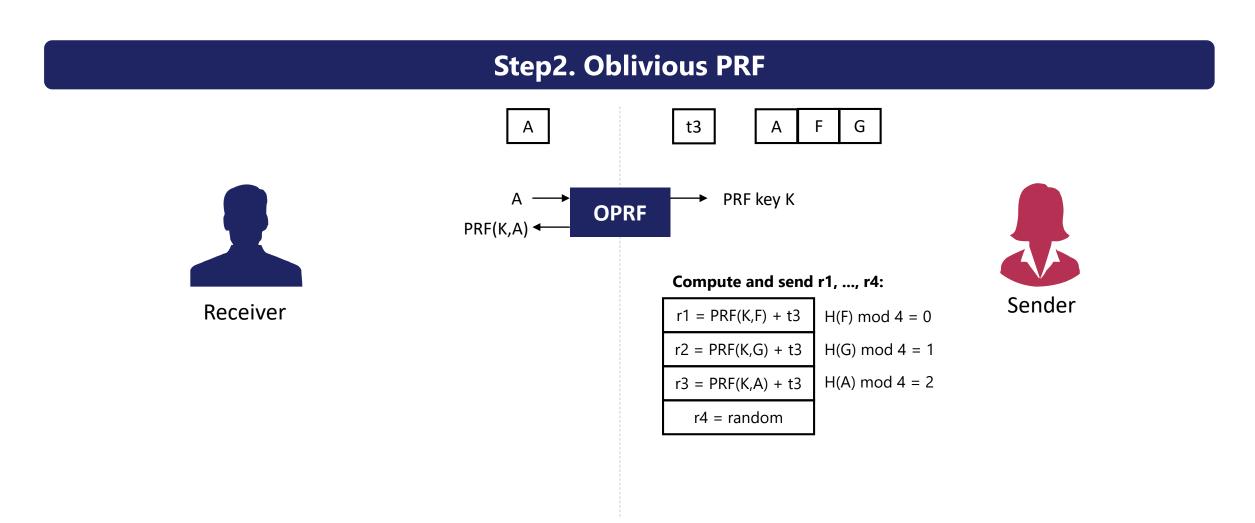
Step1. Cuckoo Hashing

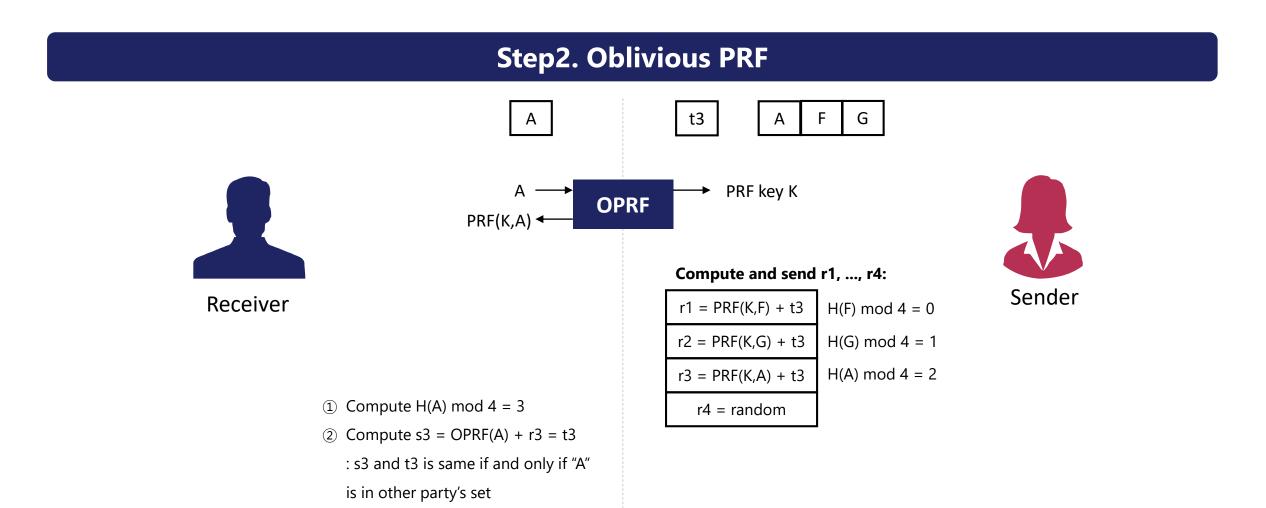


The receiver compute Cuckoo hash table, and the sender compute Simple hash table

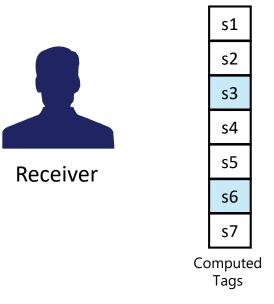

The circuit-PSI protocol consists of Cuckoo hashing, Oblivious PRF

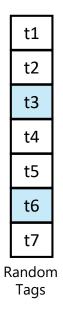

Step1. Cuckoo Hashing





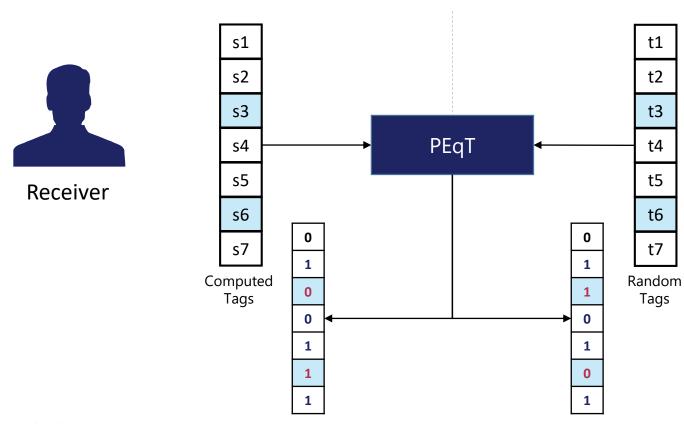
- The receiver compute Cuckoo hash table, and the sender compute Simple hash table
- The sender picks a random tag for each bin of Cuckoo hash table





The circuit-PSI protocol consists of Cuckoo hashing, Oblivious PRF

Step3. Private Equality Test



The circuit-PSI protocol consists of Cuckoo hashing, Oblivious PRF

Step3. Private Equality Test

HE-based optimizations, and security of building block

HE-based optimizations, and security of building block

CPSI with HE (SAC '22)

- Reduce communication cost during Step3: equality preserving compression
 - Compute below equation using HE scheme

• For
$$x = \sum x_i B^i$$
, $y = \sum y_i B^i$,
$$r + \sum (x_i - y_i)^2 = r \text{ iff } x = y$$

^{*} Ferret-OT is used for OT extension

Network	# of Items	Comm. (MB)	Time (s)
	2 ¹⁶	20.69	2.09
LAN	218	83.64	5.71
	2 ²⁰	394.3	20.17

Table 1. Performance of Circuit-PSI

[HMS22] K. Han, D. Moon, and Y. Son. *Improved Circuit-PSI via Equality Preserving Compression*. SAC 2022.

HE-based optimizations, and security of building block

CPSI with HE (SAC '22)

■ Reduce communication cost during Step3: equality preserving compression

Compute below equation using HE scheme

• For
$$x = \sum x_i B^i$$
, $y = \sum y_i B^i$,
$$r + \sum (x_i - y_i)^2 = r \text{ iff } x = y$$

^{*} Ferret-OT is used for OT extension

Network	# of Items	Comm. (MB)	Time (s)
	2 ¹⁶	20.69	2.09
LAN	2 ¹⁸	83.64	5.71
	2 ²⁰	394.3	20.17

Table 1. Performance of Circuit-PSI

Unbalanced CPSI with HE (AsiaCCS '23)

Convert HE-based PSI to CPSI

- Zero storage required for small set holder
- Recursive HE application for trade-off

[HMS22] K. Han, D. Moon, and Y. Son. *Improved Circuit-PSI via Equality Preserving Compression*. SAC 2022.

[SJ23] Y. Son, and J. Jeong. PSI with computation or Circuit-PSI for Unbalanced Sets from Homomorphic Encryption. AsiaCCS 2023.

HE-based optimizations, and security of building block

CPSI with HE (SAC '22)

▶ Reduce communication cost during Step3: equality preserving compression

Compute below equation using HE scheme

• For
$$x = \sum x_i B^i$$
, $y = \sum y_i B^i$,
$$r + \sum (x_i - y_i)^2 = r \text{ iff } x = y$$

^{*} Ferret-OT is used for OT extension

Network	# of Items	Comm. (MB)	Time (s)
	2 ¹⁶	20.69	2.09
LAN	2 ¹⁸	83.64	5.71
	2 ²⁰	394.3	20.17

Table 1. Performance of Circuit-PSI

Unbalanced CPSI with HE (AsiaCCS '23)

Convert HE-based PSI to CPSI

- Zero storage required for small set holder
- Recursive HE application for trade-off

For Better Building Block (AC '24)

Cryptanalysis on Malicious OPRF

- OPRF for PSI is generally OTe (or VOLE) + OKVS
- We can get at most double OPRF evaluations by overfitting OKVS
- It leads PSI to statistical distance larger than $2^{-\lambda}$

[HMS22] K. Han, D. Moon, and Y. Son. Improved Circuit-PSI via Equality Preserving Compression. SAC 2022.

[SJ23] Y. Son, and J. Jeong. PSI with computation or Circuit-PSI for Unbalanced Sets from Homomorphic Encryption. AsiaCCS 2023.

[HKLS24] K. Han, S. Kim, B. Lee, and Y. Son. Revisiting OKVS-based OPRF and PSI: Cryptanalysis and Better Construction. Asiacrypt 2024, to appear. Copyright 2024. Samsung SDS Co., Ltd. All rights reserved.

II. Applications

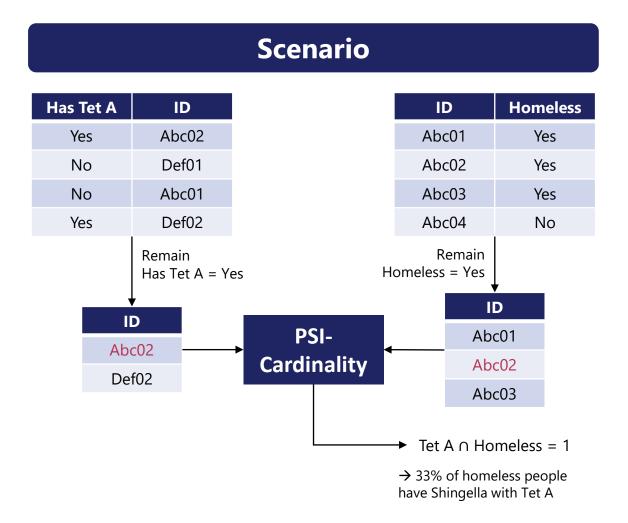
1. Genomic Analysis

Pathogen genomic data is generally considered to be non-identifying, but it can be combined with personal information

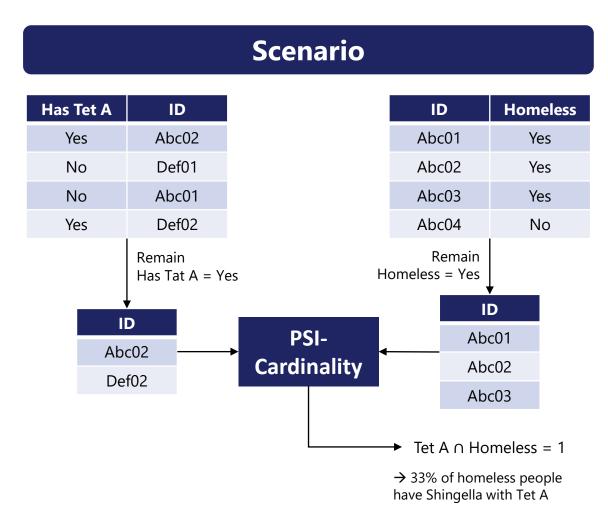
Scenario

Pathogen genomic data is generally considered to be non-identifying, but it can be combined with personal information

Scenario


Has Tet A	ID
Yes	Abc02
No	Def01
No	Abc01
Yes	Def02

ID	Homeless
10	Homeics
Abc01	Yes
Abc02	Yes
Abc03	Yes
Abc04	No


Pathogen genomic data is generally considered to be non-identifying, but it can be combined with personal information

Scenario Has Tet A Homeless ID ID Abc02 Yes Abc01 Yes Def01 No Abc02 Yes Abc01 Abc03 Yes No Yes Def02 Abc04 No Remain Remain Homeless = Yes Has Tet A = YesID ID Abc01 Abc02 Abc02 Def02 Abc03

Pathogen genomic data is generally considered to be non-identifying, but it can be combined with personal information

Pathogen genomic data is generally considered to be non-identifying, but it can be combined with personal information

Results

Outputs

• 76.92% of homeless people and 0% of non-homeless people have Shingella bacteria with Tet A

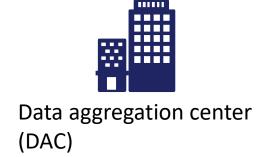
▶ Timing Result

- For 30 rows, it only takes 1 second.
- We estimate that it takes less than a minute for 1M rows

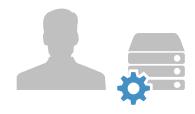
Safe Sharing of Genomic Data from Discovery to Broad Data Sharing Leveraging the Power of Beacon and Privacy Enhancing Technology (PET), Galaxy Community Conference 2023 (w/ Soyean Kim from SFU)

2. Data Aggregation

Highly sensitive identifier only goes to trusted 3rd party (government agency)



Party A

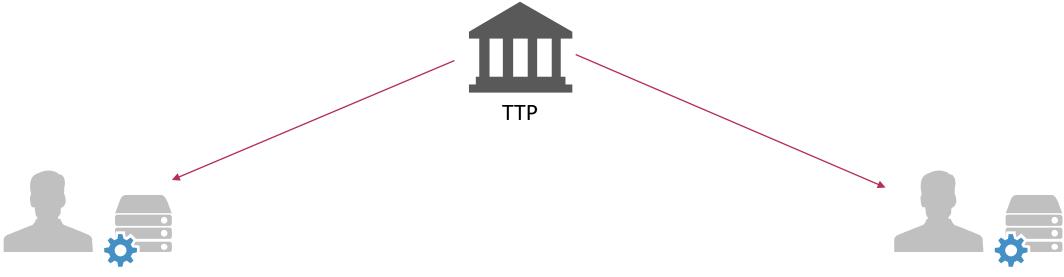


Party B

Highly sensitive identifier only goes to trusted 3rd party (government agency)

Party A
Data includes:
IDs, indices, features

Index	ID (phone)	ZIP	DOB	
A01	010-1234- 5678	12345	1978- SEP-21	
A02	010-2345- 6789	56789	1996- JUN-05	***

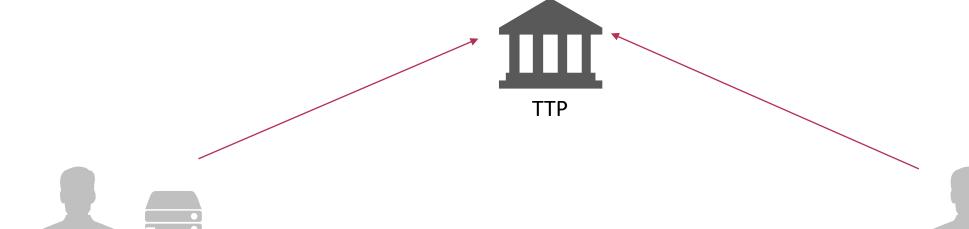


Party B
Data includes:
IDs, indices, features

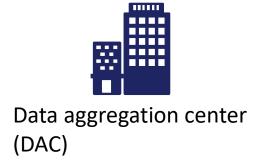
1. TTP sends salt to parties

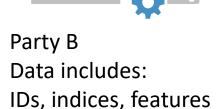
Highly sensitive identifier only goes to trusted 3rd party (government agency)

Party A
Data includes:
IDs, indices, features

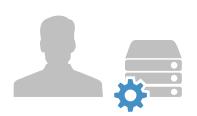

Index	ID (phone)	ZIP	DOB	
A01	010-1234- 5678	12345	1978- SEP-21	
A02	010-2345- 6789	56789	1996- JUN-05	

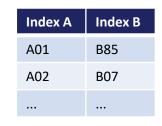
Party B
Data includes:
IDs, indices, features


Highly sensitive identifier only goes to trusted 3rd party (government agency)


- 1. TTP sends salt to parties
- 2. Parties send H(ID), and indices to TTP

Party A
Data includes:
IDs, indices, features


Index	ID (phone)	ZIP	DOB	
A01	010-1234- 5678	12345	1978- SEP-21	
A02	010-2345- 6789	56789	1996- JUN-05	


Highly sensitive identifier only goes to trusted 3rd party (government agency)

Party A
Data includes:
IDs, indices, features

Index	ID (phone)	ZIP	DOB	
A01	010-1234- 5678	12345	1978- SEP-21	
A02	010-2345- 6789	56789	1996- JUN-05	

Data aggregation center (DAC)

- 1. TTP sends salt to parties
- 2. Parties send H(ID), and indices to TTP
- 3. TTP sends index map to DAC

Party B
Data includes:
IDs, indices, features

Highly sensitive identifier only goes to trusted 3rd party (government agency)

- 1. TTP sends salt to parties
- 2. Parties send H(ID), and indices to TTP
- 3. TTP sends index map to DAC
- 4. DAC sends matching ratio to the parties

Party A

Data includes:

IDs, indices, features

Index	ID (phone)	ZIP	DOB	
A01	010-1234- 5678	12345	1978- SEP-21	
A02	010-2345- 6789	56789	1996- JUN-05	***

Matching ratio = 45%

Matching ratio = 45%

Data aggregation center (DAC)

Party B
Data includes:
IDs, indices, features

Data Aggregation System in Korea

Highly sensitive identifier only goes to trusted 3rd party (government agency)

Party A

Data includes:

IDs, indices, features

Index	ID (phone)	ZIP	DOB	•••
A01	010-1234- 5678	12345	1978- SEP-21	
A02	010-2345- 6789	56789	1996- JUN-05	

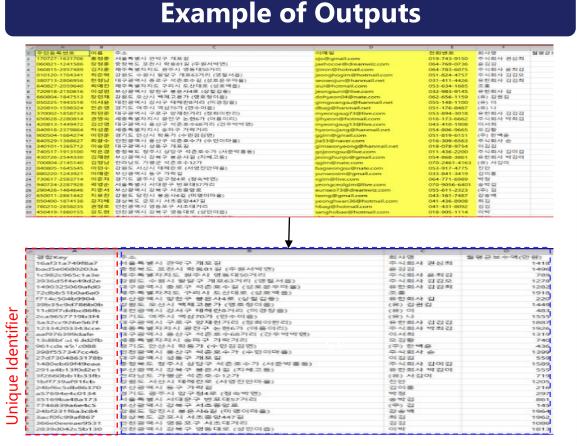
Data aggregation center (DAC)

- 1. TTP sends salt to parties
- 2. Parties send H(ID), and indices to TTP
- 3. TTP sends index map to DAC
- 4. DAC sends matching ratio to the parties
- 5. Parties send indices, and features to DAC

Party B
Data includes:
IDs, indices, features

Circuit-PSI based Data Aggregation System

Samsung SDS is one of the data aggregation center designated by government


Example of Outputs

Performances

Circuit-PSI based Data Aggregation System

Samsung SDS is one of the data aggregation center designated by government

Matching ratio: 0.43 (43% of your data is in other party's data)

Performances

Circuit-PSI based Data Aggregation System

Samsung SDS is one of the data aggregation center designated by government

| CERTURE | OFF |

A	8		
결합Key	F☆	회사명	월평균보수액(만원)
16af31a749f8a7	서울특별시 관약구 개포길	주식회사 권심회	1418
bad5e0680203a	충청북도 포전시 학동81길 (주원서박면)	윤검검	1496
1c982c965c1a3e	제주특별자치도 원주시 영동대50거리	주식회사 윤최감	789
3936d5f4e49d2e	장원도 수원시 팔달구 개포63거리 (영철서음)	주식회사 검검요	1278
1490325069afd0	대구광역시 중로구 석준호수길 (성호문우마율)	유한회사 김김희	1282
72dbb51b0a6a0	체주특별자치도 구리시 도산대로 (성호백읍)	조흥	1918
f714c504b9904	누산광역시 양천구 봉은사4로 (상철김동)	유한회사 김	220
39b35c9d786b0b	감원도 오산시 백체고분가 (영호정이음)	(유) 김권김	1449
11d0f7ddbc86fb	대전공역시 강서구 태혜란8거리 (미경창음)	(유) 이	483
2ca9657719b3f4	경기도 여주시 역상70가 (민수이용)	(유) 나	1555
3a32cc926e567f	[대구광역시 구로구 양재천거리 (정희이한리)	유한회사 김김감	1887
12334203343cce	세종특별자치시 광전구 논현6가 (아름이리)	주식회사 백회감	1926
aaf976399dafe	[[구광역시 용산구 석준호수68거리 (건우박박면)	이서희	1319
13d8bf ol 6 dd2fb	세종특별자치시 승파구 가락거리	오김황	740
961cde a5/1c088	청기도 안산시 학동가 (수민감감면)	(주) 한백윤	436
398f557347cc46	인천광역시 용산구 석준호수가 (수민이마음)	주식회사 손	1399
27d7304863178b	대구광역시 성동구 개포길	이감감	559
1480eb69f49eaa	충청북도 청주시 상당구 석춘호수가 (서준박홍동)	주식회사 김이김	1589
291a4b13f0d2e1	부산광역시 강북구 봉은사길 (지혜고등)	유한회사 박김이	555
3f2660bb1b33fb	전라남도 가랭군 석존호수12가	(유) 서감이	719
1bff739af91fcb	강원도 서산시 테헤란로 (서영진안마음)	전안	1205
24bf6c5db86370	부산광역시 동구 가락길	감이용	216
a57694e4c0134	경기도 공주시 압구정4로 (정숙박면)	14t 5d	297
35169ba48a173	서울특별시 서대문구 반포대57거리	송박김	861
7746839a6e4c5	부산공역시 감복구 서조중앙로	(주) 김	145
24bf231f6a3c84	강원도 당잔시 봉은사6길 (미영이마음)	강송백	1964
3acf0fc99af867	성상북도 군포시 서초증앙447길	최김	1962
366e0eeeae9531	인천광역시 영등포구 서초대거리	김김	1086
2839d042c5b130	인천공역시 강복구 영동대로 (성민이죠)	OLAS	1813

Matching ratio: 0.43 (43% of your data is in other party's data)

Performances

▶ How it works

- For the unique ID generation, we used OPRF instead of salted hash
- Matching ratio is computed using circuit-PSI

■ Timing Result (LAN)

	Dataset Size	Running Time
Join Key Generation	1m	1m 28s
Ratio Computation	10m	11m 38s
	20m	20m 40s
Multiple ID Col Support	-	Checked

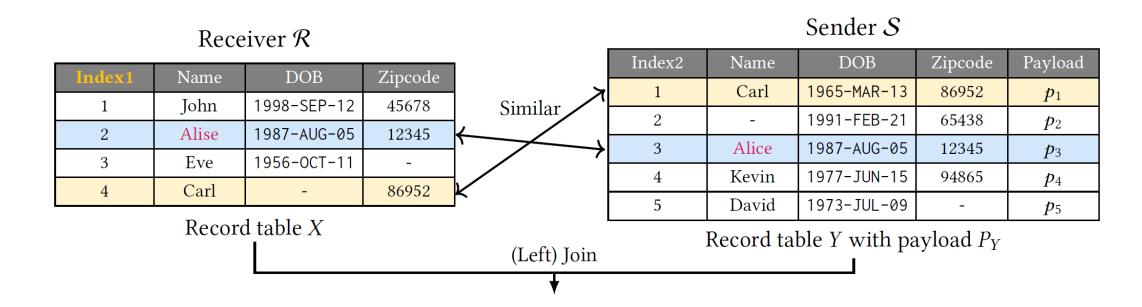
00-1874138 강지에 강상북도 군도시 서초중앙447길 10-2558235 - 공청호 인천광역시 양동모구 서초대거리 19-1860155 - 강도현 안천광역시 강동구구 양동대로 (성단이용)

3. Privacy-Preserving Record Linkage

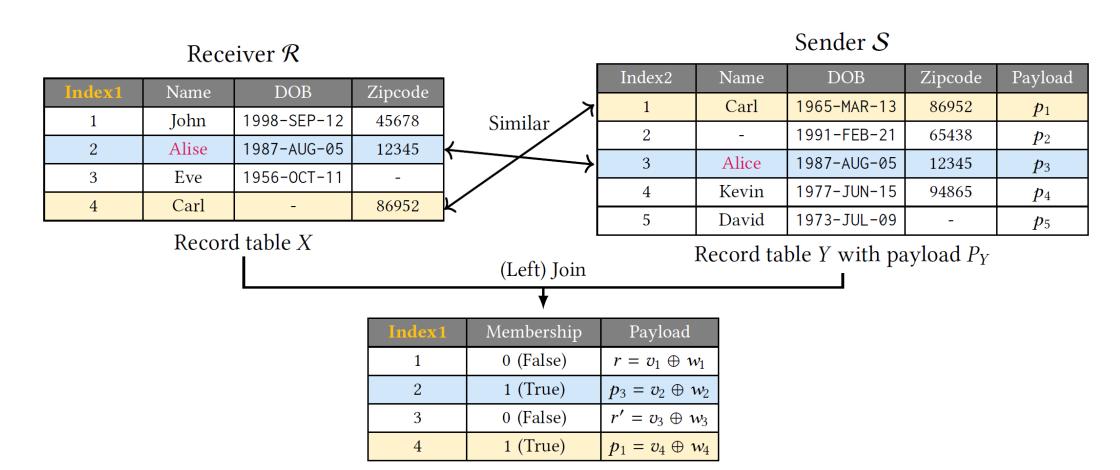
Similar

What is target functionality?

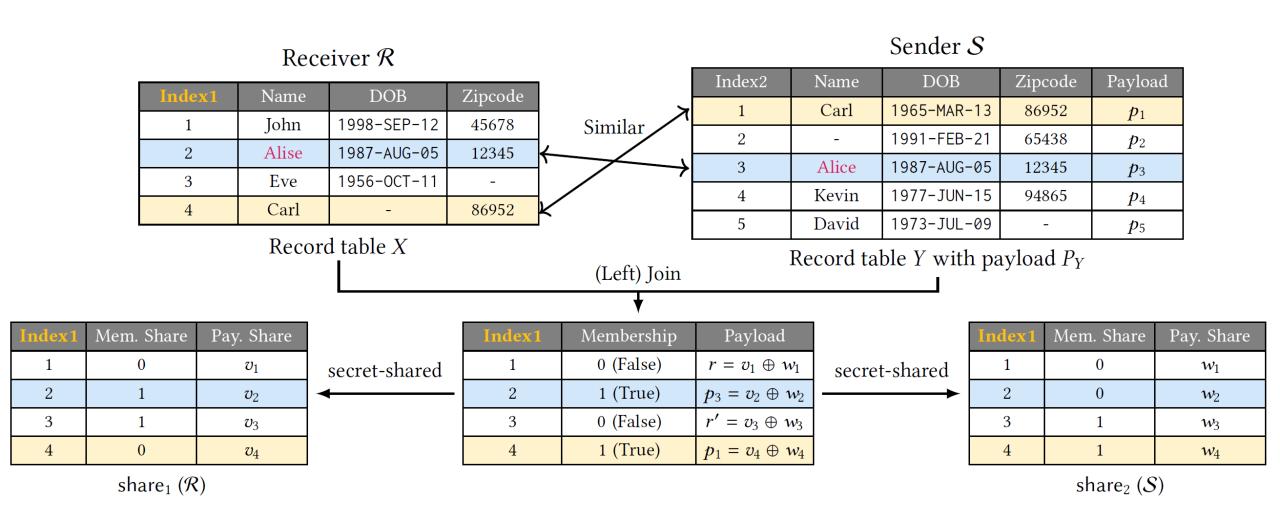
Index1	Name	DOB	Zipcode	
1	John	1998-SEP-12	45678	
2	Alise	1987-AUG-05	12345	4
3	Eve	1956-OCT-11	-	
4	Carl	-	86952	K


Record table *X*

Sender ${\cal S}$


	Index2	Name	DOB	Zipcode	Payload
7	1	Carl	1965-MAR-13	86952	p_1
	2	-	1991-FEB-21	65438	p_2
١	3	Alice	1987-AUG-05	12345	p_3
	4	Kevin	1977-JUN-15	94865	p_4
	5	David	1973-JUL-09	-	p_5

Record table Y with payload P_Y


What is target functionality?

What is target functionality?

What is target functionality?

from CPSI and some MPC techniques (simplified)

1. Encode features (e.g., concatenation, LSH)

Index1	Name	DOB	Zipcode
1	John	1998-SEP-12	45678
2	Alise	1987-AUG-05	12345
3	Eve	1956-OCT-11	-
4	Carl	-	86952

Record table *X* with quasi-identifiers

Encode

Index1	feature1	feature2	feature3	feature4
1	d330ca	719cf0	0e0348	79457c
2	01191e	bf9a47	0c1452	c41b44
3	e60467	b91fc3	0e79d1	005dae
4	f6fabd	a8fdd6	a80394	737963

Encoded table \hat{X} with features

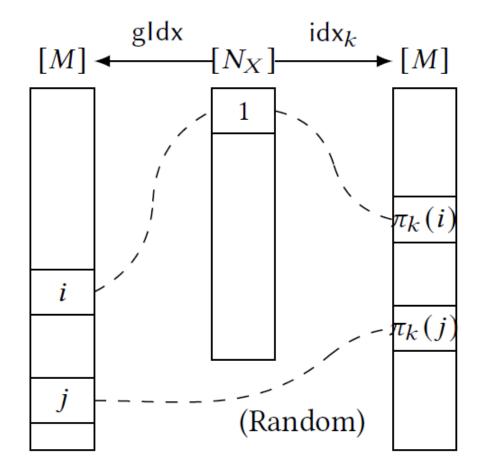
from CPSI and some MPC techniques (simplified)

- 1. Encode features (e.g., concatenation, LSH)
- 2. Invoke CPSI protocols feature-wisely

CPSI		CPSI	CPSI	CPSI	
Index1	feature1	feature2	feature3	feature4	
1	d330ca	719cf0	0e0348	79457c	
2	01191e	bf9a47	0c1452	c41b44	
3	e60467	b91fc3	0e79d1	005dae	
4	f6fabd	a8fdd6	a80394	737963	
_					

Encoded table \hat{X} with features

CDCI


CDCI

CDCL

CDCI

from CPSI and some MPC techniques (simplified)

- 1. Encode features (e.g., concatenation, LSH)
- 2. Invoke CPSI protocols feature-wisely
- 3. Align the shares using Permute-and-Share protocol

from CPSI and some MPC techniques (simplified)

- 1. Encode features (e.g., concatenation, LSH)
- 2. Invoke CPSI protocols feature-wisely
- 3. Align the shares using Permute-and-Share protocol
- 4. Compute matching criterion using generic MPC (e.g., GMW)

$$\sum_{i} \operatorname{Eq}(\operatorname{feature}_{i}) \ge t$$

Index1	feature1	feature2	feature3	feature4
1	d330ca	719cf0	0e0348	79457c
2	01191e	bf9a47	0c1452	c41b44
3	e60467	b91fc3	0e79d1	005dae
4	4 f6fabd		a80394	737963

Encoded table \hat{X} with features

from CPSI and some MPC techniques (simplified)

- 1. Encode features (e.g., concatenation, LSH)
- 2. Invoke CPSI protocols feature-wisely
- 3. Align the shares using Permute-and-Share protocol
- 4. Compute matching criterion using generic MPC (e.g., GMW)

$$\sum_{i} \operatorname{Eq}(\operatorname{feature}_{i}) \ge t$$

Dataset	Data Size	#Features	Comm. (MB)	Setup (s)	Online (s)	F1-score
European Census	24K	6	76.2	4.47	1.13	0.948
NCVR	1M	3	1615	169	23.7	0.976

References

- Data table in p.37-39 is generated by Faker (owner: Francois Zaninotto, url: https://faker.readthedocs.io/en/master/) at Oct. 1. 2021
- [HMS22] K. Han, D. Moon, and Y. Son. Improved Circuit-PSI via Equality Preserving Compression. SAC 2022.
- [SJ23] Y. Son, and J. Jeong. PSI with computation or Circuit-PSI for Unbalanced Sets from Homomorphic Encryption. AsiaCCS 2023.
- [HKLS24] K. Han, S. Kim, B. Lee, and Y. Son. Revisiting OKVS-based OPRF and PSI: Cryptanalysis and Better Construction. Asiacrypt 2024, to appear.
- [HKS24] K. Han, S. Kim, and Y. Son. Private Computation on Common Fuzzy Records. PETS 2025, to appear.

Thank you

Q&A

SAMSUNG SDS