Private Set Intersection for Small Sets

Mike Rosul€k, Oregon State Udiversity
NIST WPEG, September 24, 2024

Joint work with: Yeongjin Jang, Stanislav Lyakhov, Lawrence Roy, Ni Trieu

what is private set intersection (PSI)?

Alice Bob
p X 0 S e} n
n T e i a y

what is private set intersection (PSI)?

Alice Bob

P RS
Pox (@ ORONO.
--------------- i _-—"‘
.............
@ @-. i a Y

-
- -
- -

-
- i
"

what is private set intersection (PSI)?

what is private set intersection (PSI)?

why use PSI?

® signal

The Difficulty Of Private Contact Discovery

Building a social network is not easy. Social networks have value
proportional to their size, so participants aren’t motivated to join new
social networks which aren’t already large. It's a paradox where if
people haven't already joined, people aren’t motivated to join.

{my phone contacts} N {users of your service}

why use PSI?

® signal

=

The Difficulty Of Private Contact Discovery

moxie0
engadget

feature
Google's Password Checkup
will%e built into Chrome

smpromised.
The tool warns users i their passwords are known to b compr

= | W e

network is not easy. Social networks have value
neir size, so participants aren't motivated to join new
which aren't already large. It's a paradox where if

ready joined, people aren’t motivated to join.

<>

(
G Torbet — M

“c

{my passwords} N {passwords found in breaches}

why use PSI?

® signal

The Difficulty Of Private C

moxie0
engadget

feature
Google's Password Checkup
will%e built into Chrome

smpromised.
The tool warns users i their passwords are known to b compr

2 | W e

network is not easy. Social networks have value
neir , S0 participants aren’t motivated to join new
which aren't already large. It's a paradox where if

ready joined, people aren’t motivated to join

<>

G Torbet - 1

‘ g

{my availability} N {your availability}

why use PSI?

® signal

The Difficulty Of Private C

engadget moxie0

Googlels PassWord checkup feature ”e.‘Wf)l'k is not easy. Social networks have value
. ta t neir size, so |

will be built into Chrome uhich arent | BTEIEE :

The tool wams users f their passwords are known tobe compromised. ready joined

Google Turns to Retro Cryptography to
Keep Data Sets Private

Google's Private Join and Compute willlet companies compare notes without divulging sensitive
information.

{people who saw ad} N {customers who made purchases}

why use PSI?

Ehe New York Times

Who Is Registered to Vote in Two
States? Some in Trump’s Inner Circle

90006 Private C

engadget

network is not easy. Social net ks have value
Ggogle‘s F_’as_sword Checkup feature 7" o w T
will be built into Chrome

which aren't |
e ready join
The tool warns users if their passwords are known to be compromised. y joined

2 | W Google Turns to Retro Cryptography to
<> [y

oot - “ b Keep Data Sets Private

Google's Private Join and Compute willlet companies compare notes without divulging sensitive
information.

{voters registered in OR} N {voters registered in NY}

motivating PSI for small sets

PSI for small sets = PSI for personal privacy

motivating PSI for small sets

Preserving Authentication for Apple AirDrop

PrivateDrop: Practical Privacy

Alexander Heinrich Matthias Hollick Thomas Schneider
Milan Stute Christian Weinert

Technical University of Darmstadt, Germany

@ USENIX Security 2021

motivating PSI for small sets

r Apple AirDrop

. < ation fo
actical Privacy-Preserving Authentication

PrivateDrop: Pr:

ck Thomas Schneider
ian Weinert

Abstract
Apple’s offline file-sharing service AirDrop is integrated into
more than 1.5 billion end-user devices worldwide. We dis-
covered two design flaws in the underlying protocol that
allow attackers to learn the phone numbers and email ad-
dresses of both sender and receiver devices. As a reme-
diation, we study the applicability of private set intersec-
tion (PSI) to mutual authentication, which is similar to contact
discovery in mobile messengers. We propose a novel opti-
mized PSI-based protocol called PrivateDrop that addresses

stadt, Germany

@ USENIX Security 2021

the specific challenges of offline resource-constrained op-
eration and integrates seamlessly into the current AirDrop
protocol stack. Using our native PrivateDrop implementa-

motivating PSI for small sets

r Apple AirDrop

. < ation fo
actical Privacy-Preserving Authentication

PrivateDrop: Pr:

ck Thomas Schneider

Abstract . an Weinert
Apple’s offline file-sharing service AirDrop is integrated into
more than 1.5 billion end-user devices worldwide. We dis-
covered two design flaws in the underlying protocol that
allow attackers to learn the phone numbers and email ad- . ! Recuritv 2021
dresses of both sender and riceiver devices. As a reme- (@) USENIX Security A
diation, we study the applicability of private set intersec-
tion (PSI) to mutual authentication, which is similar 1Q L. at
discovery in mobile messengers. We propose anof Set Sizes. Our complexity analysis in § 4'2 esrh(c))gvisdéﬁti_
mized PSI-based protocol called PrivateDrop that a(the online PSI overhead depfmds on the nurr; online study
the specific challenges of offline resource-constragl fiers m and address book entries 7. A prev1oun —
eration and integrates seamlessly into the current 4 found that Apple users have n = 13'6 cqntact; ol ¢ magnitude

Therefore, we select values for n in this or C _ oo

stadt, Germany

motivating PSI for small sets

Preserving Authentication for SSH

Practical Privacy-

Lawrence Roy* Stanislav Lyakhov* Yeongjin Jang* Mike Rosulek”

June 9, 2022

@ USENIX Security 2022

different applications

U

different techniques

QO

PSI on small sets (hundreds)
» private availability poll

> key agreement techniques

QO

PSI on small sets (hundreds) PSI on large sets (millions)
» private availability poll > double-registered voters

> key agreement techniques > OT extension; combinatorial tricks

QO

PSI on small sets (hundreds) PSI on large sets (millions)
» private availability poll > double-registered voters
> key agreement techniques > OT extension; combinatorial tricks

PSI on asymmetric sets (100 : billion)
> contact discovery; password checkup

> offline phase; leakage

QO

PSI on small sets (hundreds) PSI on large sets (millions)

» private availability poll > double-registered voters

> key agreement techniques > OT extension; combinatorial tricks
PSI on asymmetric sets (100 : billion) computing on the intersection

> contact discovery; password checkup > sales statistics about intersection

> offline phase; leakage > generic MPC

QO

PSI on small sets (hundreds)
» private availability poll

> key agreement techniques

PSI on asymmetric sets (100 : billion)

> contact discovery; password checkup

> offline phase; leakage

PQLoxn la e

—pns)

Not to mention:
» approximate/fuzzy matching

» more than 2 parties/sets

» private set union

oters

binatorial tricks

> generic MPC

computing on the intersection

> sales statistics about intersection

running time

PSI techniques for small sets

-

} base OTs

set size (n)

OT-based PSI:
> 128 base OTs
> O(n) symm-key ops

PSI techniques for small sets

OT-based PSI:
> 128 base OTs
> O(n) symm-key ops

running time

KA-based PSI:
> O(n) pub-key ops

set size (n)

running time

PSI techniques for small sets

500 1000

set size (n)

OT-based PSI:
> 128 base OTs
> O(n) symm-key ops

KA-based PSI:
> O(n) pub-key ops

Compact and Malicious
Private Set Intersection

for Small Sets

Mike Rosulek, Oregon State University
Ni Trieu, Arizona State University

appeared at ACM CCS 2021

communication (KB)

64

32

16

PSI cost: 256 items per party:

A

PRTY20 (“PaXoS”)

KKRT16
= = CM20

DKT104

PRTY19 (“spot-low”)

m HFH99 (“classic DH-PSI”)

this work
) B semi-honest
B this work A malicious
L ‘ ‘ ‘
128 256 512

running time (milliseconds)

our semi-honest PSI:

> 45% | communication
> 20% | runtime

our malicious PSI:

> 10% | communication
> 20% | runtime

vs. best semi-honest PSI!

> 75% | communication
> 55% | runtime

vs. best malicious PSI

Alice (random oracle H : {0,1}* — G) Bob

X1, X2, « -« Vi Y25 -

[HubermanFranklinHogg99]

Alice (random oracle H : {0,1}* — Q) Bob

X1, X2, . .. H(y)b H(y)b, ... Vi Y25 - -

A

[HubermanFranklinHogg99]

Alice (random oracle H : {0,1}* — G) Bob

X1, X2, . .. H(y)b H(y)b, ... Vi Y25 - -

A

H(y)™ H(y)®, ...

[HubermanFranklinHogg99]

Alice (random oracle H : {0,1}* — G) Bob

X1, X2, . .. H(y)b H(y)b, ... Vi Y25 - -

A

compute

H(y1)%, H(y,)%, ...
y1) (32) H(y)% H(y)" ...

[HubermanFranklinHogg99]

Alice (random oracle H : {0,1}* — G) Bob

X1, X2, . .. H(y)b H(y)b, ... Vi Y25 - -

A

compute

H(y1)%, H(y,)%, ...
y1) (32) H(y)% H(y)" ...

H(xl)“,H(xz)“, PN

\ 4

compare H(-)* values

[HubermanFranklinHogg99]

Alice (random oracle H : {0,1}* — G) Bob

X1, X2, . .. H(y)b H(y)b, ... Vi Y25 - -

A

compute

H(y)%, H(y,)%, ...
(y)®, H(y2) Hn) Him)e,...

H(Xl)a, H(X2)a, PN

compare H(-)* values

\ 4

Semi-honest security:
> x +— H(x)%is a PRF (DDH assumption + random oracle)

> first two messages are an oblivious PRF protocol

[HubermanFranklinHogg99]

Alice (random oracle H : {0,1}* — G) Bob

X1, X2, « -«

y15y2,--. y1,y2,...
—
PRFq(x1), PRFa(x), ...

Semi-honest security:

compare PRF,(-) values

\ 4

> x +— H(x)%is a PRF (DDH assumption + random oracle)

> first two messages are an oblivious PRF protocol

» standard OPRF—PSI paradigm [FreedmanlshaiPinkasReingold05]

[HubermanFranklinHogg99]

Alice Bob

X1, X2, . .. H(y)b H(y)?, ... Vi Y25 - -
H(y)® H(y)®,... |
H(Xl)a,H(XZ)a, ce

3n group elements

Alice Bob
X1, X2, . .. H(y)b H(y)?, ... Vi Y25 - -

A

H(y), H(y,), . ..

H(xl)“,H(xg)“, e

A 4

3n group elements

how could you possibly reduce communication?

Alice Bob
X1, X2, . .. H(y)b H(y)?, ... Vi Y25 - -

A

H ab, H)ab’ . compute: |
()/1) (yZ > H(yl)“ — (H(yl)ab)b

H(y2)% = (H(y)®)""

H(xl)“,H(xg)“, e

A 4

3n group elements

how could you possibly reduce communication?

Alice Bob

X1, X2, . .. H(y)b H(y)?, ... Vi Y25 - -
H ab, ab’ . compute:)
o) ‘IH(yZ) » HO =|[(HG)®)

—

H(xl)“,H(xg P

Y

3n group elements

how could you possibly reduce communication?

H(y) 2 H2)™)"

Alice
X1, X2, -« + H(yl)b,H(yz)b,.--

A

H(y) | H(y2)®) ..

H(xl)“,H(xg)“, e

3n group elements

A 4

Bob

Y Yo,

compute:

H(y1)® = (H()?'

H(y,)" =

(H(y2)*)

how could you possibly reduce communication?

—1

Alice Bob
X1, X2, . .. H(yl)”,H(yz)”,... Vi Y2 - -

A

H ab, H)ab’ . compute: |
(y1) (2 . H(y)® = (H(y;)®)?

H(y2)% = (H(y)®)""

H(xl)“, H(XZ)a, e

Y

3n group elements

how could you possibly reduce communication?

replace random oracle with some “trapdoored” function

... where Bob knows dlog relationships between outputs

Alice Bob
X1, X2, . .. H(yl)”,H(yz)”,... Vi Y2 - -

H(yl)ab,EM ye e

H(xl)“, H(XZ)a, .

A

(H(Y)®)r
™= (H(y»)%)"

\ 4

3n group elements

how could you possibly reduce communication?

replace random oracle with some “trapdoored” function

... where Bob knows dlog relationships between outputs

our approach:

polynomial interpolation!

Alice Bob

X1, X2, .« -« Y Y2, - -

Alice Bob

X1, X2, .« -« Y Y2, - -

interpolate poly P:
P(y;) = g"

Alice

X1, X2, . -«

coefficients of P

Bob
Y, Y2, - - -

interpolate poly P:
P(y;) = g"

Alice Bob

X1, X2, .« -« Y Y2, - -

interpolate poly P:
coefficients of P P(y) = g"

a

g

compute

P(y)" = (g%)"

A 4

Alice Bob

X1, X2, -+ Y Y2, .-

interpolate poly P:
coefficients of P P(y) = g"

a

g

compute

P(y)" = (g%)"

A 4

P(xl)“, P(X2)a, e

compare P(-)* values

\ 4

Alice Bob

X1, X2, . -« Vi, Y25 -

interpolate poly P:
coefficients of P P(y) = g"

a

g

compute

P(y)*=(g

A 4

a)b,‘

P(xl)“, P(XZ)a, e

compare P(-)* values

A 4

correctness: Bob knows dlog of P(y) for programmed points v/

Alice Bob

X1, X2, . -« Vi, Y25 -

interpolate poly P:
coefficients of P P(y) = g"

a

g

compute

P(y)*=(g

A 4

a)b,‘

P(xl)“, P(X2)a, e

compare P(-)* values

\ 4

correctness: Bob knows dlog of P(y) for programmed points v/
obliviousness: description of P doesn’t leak choice of programmed points v

Alice

Bob
X1, X2, .« -« Y, Y2, -
2n+ 1 group elements
interpolate poly P:
b coefficients of P P(y) =gh

a

g

compute

P(y)*=(g

A 4

a)b,‘

P(xl)“, P(X2)a, e

\ 4

compare P(-)* values

correctness: Bob knows dlog of P(y) for programmed points v/
obliviousness: description of P doesn’t leak choice of programmed points v
efficiency: |description of P| = n group elements v

Alice

Bob
X1, X25 - - - Y, Y2, -
2n+ 1 group elements
interpolate poly P:
b coefficients of P P(y) =gh

a

g

compute

P(y)*=(g

A 4

a)bi
P(xl)“, P(X2)a, e

\ 4

compare P(-)* values

correctness: Bob knows dlog of P(y) for programmed points v/
obliviousness: description of P doesn’t leak choice of programmed points v
efficiency: |description of P| = n group elements v
P(-)%is PRF: Bob cannot know dlog of any other P(x) 77

interpolate so that:
P(y;) = g"

??U??

other P(x) outputs
have unknown dlog

interpolate so that:
P(y) = g”

??U??

other P(x) outputs
have unknown dlog

Ideal permutation model: all parties have oracle access to random IT, IT™*

interpolate so that: interpolate so that:
P(y) = g" P(y;) =117 (g")
?7? U 27 U V4
other P(x) outputs simulator can program
have unknown dlog other TI(P(x)) outputs

Ideal permutation model: all parties have oracle access to random IT, IT™*

our real protocol:

Alice Bob
X1, X25 .+« + Y1, Y25 -
2n+ 1 group elements
interpolate poly P:
) coefficients of P P(y;) =11""(g")

a compute

g
II(P(y:)* = (g

A 4

I1(P(x1)) IL(P(x2))%, . ..

A 4

compare II(P(-))% values

our real protocol (fine print):

Alice Bob
X1, X25 .+« + Y1, Y25 -
2n+ 1 group elements
interpolate poly P:
~ coefficients of P P(y;) =11""(g")

a compute

II(P(y:))* = (g

g

A 4

a) bi

I1(P(x1)) IL(P(x2))%, . ..

A 4

compare II(P(-))% values

semi-honest: Alice’s group elements can be truncated

our real protocol (fine print):

Alice Bob
X1, X25 + -« Y, Y2, .-
2n+ 1 group elements
interpolate poly P:
~ coefficients of P P(y;) =11""(g")

a compute

II(P(y:))* = (g

g a) bi

A 4

I1(P(x1)) IL(P(x2))%, . ..

compare II(P(-))% values

A 4

semi-honest: Alice’s group elements can be truncated

malicious: a few more strategic RO calls (to help simulator extract)

Practical Privacy-Preserving
Authentication for SSH

Lawrence Roy
Stanislav Lyakhov
Yeongjin Jang
Mike Rosulek

appeared at USENIX Security 2022

SSH client SSH server

should I authenticate
with pub key 6c6c6568...7

no

SSH client SSH server

should I authenticate
with pub key 6c6c6568...7

no

should I authenticate
with pub key 73616664...7

-

no

SSH client SSH server

should I authenticate
with pub key 6c6c6568...7

no

should I authenticate
with pub key 73616664...7

-

no

yes

A

SSH client SSH server

should I authenticate
with pub key 6c6c6568...7

no

should I authenticate
with pub key 73616664...7

-

no

yes

signature

A

SSH client SSH server problem: server can fingerprint client:

should I authenticate > refuse all advertisements = learn all keys
with pub key 6c6c6568...7
N

) (no) "

N

should I authenticate
with pub key 73616664...7
P

) (o)]

D v

SSH client

shot
with p

shou
with pt

SSH server nrohlona. cnweae

- ~

SSH WHOAMLFILIPPO.IO

Here's a fun PoC | built thanks to Ben's dataset.

bens daldst:

| don't want to ruin the surprise. so just try this command. (It's harmless.)

ssh whoami.filippo.io

For the security crowd: don't worry. | don't have any OpenSSH oday and evenif | did |
wouldn't burn them on my blog. Also, ssh is designed to log into untrusted servers.

Filippo Valsorda https: //words . filippo. i0/ssh-whoami- filippo-io/

[keys

https://words.filippo.io/ssh-whoami-filippo-io/

SSH client

shot
with p

shou
with pt

[[kochanski:~1$ ssh whoami.filippo.io

_o/ Hello Mike Rosulek!
pid you know that ssh sends all your public keys to any server
it tries to authenticate to?
That's how we know you are @rosulek on GitHub!

|

|

|

|

|

|

|

|

|

| Ah, maybe what you didn't know is that GitHub publishes all users'
| ssh public keys. Myself, I learned it from Ben (benjojo.co.uk).
|
|
|
|
|
|
|
|
|
|

That's pretty handy at times :) for example your key is at
https://github.com/rosulek.keys

—- @FiloSottile (https://twitter.com/FilcScttile)

p.S. The source of this server is at
https://github.cum/FiloSottile/whcami.filippu.io

Connection to whoami.filippo.io closed.

[keys

SSH client

shot
with p

shou
with pt

[[kochanski:~]$ ssh whoami.filippo.io

I _o/ Hello Mike Rosulek! l

pid you know that ssh sends all your public keys to any server
it tries to authenticate to?

L

That's hche know you are @rosulek on GitHubq

|

|

|

|

|

|

|

|

| S

| Ah, maybe what you didn't know is that GitHub publishes all users'
| ssh public keys. Myself, I learned it from Ben (benjojo.co.uk).
|
|
|
|
|
|
|
|
|
|

That's pretty handy at times :) for example your key is at
https://github.com/rosulek.keys

—- @FiloSottile (https://twitter.com/FilcScttile)

p.S. The source of this server is at
https://github.com/FiloSottile/whcami.filippo.io

Connection to whoami.filippo.io closed.

[keys

SSH client SSH server problem: server can fingerprint client:

should I authenticate > refuse all advertisements = learn all keys
with pub key 6c6c6568...7
N

) (no) "

N

> can configure client to send only “correct” key

should I authenticate
with pub key 73616664...7
P

) (o)]

D \—/

SSH client SSH server problem: server can fingerprint client:

should I authenticate > refuse all advertisements = learn all keys
with Bob’s pub key?

yes/no
~ problem: client can probe server:

> can configure client to send only “correct” key

> offer someone else’s pub key, observe response

> pre-emptive signatures possible (in principle)

SSH client SSH server problem: server can fingerprint client:

should I authenticate > refuse all advertisements = learn all keys
with pub key 6C6C6568“;? > can configure client to send only “correct” key
no

~ problem: client can probe server:

> offer someone else’s pub key, observe response

should I authenticate > pre-emptive signatures possible (in principle)
with pub key 73616664...7
> problem: server sees which key was used:
no
< » and can prove it! = authentication not deniable

» fundamental to protocol

yes

signature

A

SSH client SSH server
should I authenticate

with pub key 6c6c6568...7

(res)

N—

>

problem: server can fingerprint client:
> refuse all advertisements = learn all keys

> can configure client to send only “correct” key

problem: client can probe server:
> offer someone else’s pub key, observe response

> pre-emptive signatures possible (in principle)

problem: server sees which key was used:
» and can prove it! = authentication not deniable

» fundamental to protocol

problem: server can act as honeypot:
> accept any key, even ones never seen before

> fundamental to protocol

goals of this work

1 server & client should learn minimal information

https://github.blog/2021-09-01-improving-git-protocol-security-github/

goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

https://github.blog/2021-09-01-improving-git-protocol-security-github/

EOdlS of thic awnrl

Requests by signature type

ecdsa-sha2

ssh-ed26519 ssh-dss
7.3% 0.3%

https://github. blog/2021-69-01-1imp roving-git-protocol-secu rity-github/

https://github.blog/2021-09-01-improving-git-protocol-security-github/

goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

3 minimize reliance on per-site configuration

https://github.blog/2021-09-01-improving-git-protocol-security-github/

our new authentication method: big picture

client server

Skl, Sk4, Skg — | pkl,pkz, ceey pk6
our protocol

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

our new authentication method: big picture

client server
Skl, Sk4, Skg — | pkl,pkz, ceey pk6

our protocol
client has 3 keys, including

at least one of {sk;, ..., sks}

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

our new authentication method: big picture

client

Skl, Sk4, Skg —

server has 6 keys,
including pk; and pk,

our protocol

Server

<— pky, pko, . . ., pke

client has 3 keys, including

at least one of {sk;, ..., sks}

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

our new authentication method: big picture

client

Skl, Sk4, Skg —

server has 6 keys,
including pk; and pk,

our protocol

Server

<— pky, pko, . . ., pke

client has 3 keys, including

at least one of {sk;, ..., sks}

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

> does not depend on site-specific configuration;
safe to use all keys in every authentication attempts

our new authentication method: big picture

client P server
Skl, Sk4, Skg — | pkl,pkz, ceey pk6
our protocol
server has 6 keys, client has 3 keys, including
including pk; and pk, at least one of {sk;, ..., sks}

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

> does not depend on site-specific configuration;
safe to use all keys in every authentication attempts

> client won’t connect unless server knows and explicitly
includes one of client’s keys

technical overview

client (with {sk;};): server (with {pk;};):

technical overview

client (with {sk;};): server (with {pk;}:):
{ (st phih) 1. anonymous multi-KEM

¢ {mj}; — Enc({pkj}j) address ciphertext to {pk;};;
skj decrypts c to m;;
c hides pk; recipients

technical overview

client (with {sk;};): server (with {pk;};):
1. anonymous multi-KEM

c e {mj}; — Enc({pkj}j) address ciphertext to {pk;};;
skj decrypts c to m;;

c hides pk; recipients

technical overview

client (with {sk;};): server (with {pk;};):
1. anonymous multi-KEM

c e {mj}; — Enc({pkj}j) address ciphertext to {pk;};;
skj decrypts c to m;;

{mi := Dec(sk;, c)}i c hides pk; recipients

technical overview

client (with {sk;};): server (with {pk;}:):
{ (st phih) 1. anonymous multi-KEM

c e {mj}; — Enc({pkj}j) address ciphertext to {pk;};;
skj decrypts c to m;;

i c hides pk; recipients

{ﬁi := Dec(sk;, c)}

2. private set intersection
{mj}; Y

each party has set of items;

technical overview

client (with {sk;};): server (with {pk;}:):
{ (st phih) 1. anonymous multi-KEM

c e {mj}; — Enc({pkj}j) address ciphertext to {pk;};;
skj decrypts c to m;;

i c hides pk; recipients

{ﬁi := Dec(sk;, c)}

2. private set intersection
{mj}; Y

each party has set of items;
client learns intersection;

{mi}i 0 {m;}; «—

technical overview

client (with {sk;};): server (with {pk;}:):
{ (st phih) 1. anonymous multi-KEM

c ¢ {mj}; — Enc({pkj}j) address ciphertext to {pk;};;
skj decrypts c to m;;

i c hides pk; recipients

{ﬁi := Dec(sk;, c)}

2. private set intersection
{mj}; Y

each party has set of items;
client learns intersection;
server learns whether empty

{mi}in{m}; —1—n=0?

technical overview & contributions

client (with {sk;};): server (with {pk;}:):
{ (st phih) 1. anonymous multi-KEM

c c.{mj}; — EnC({ij}j) single MKEM construction sup-

{ﬁi := Dec(sk;, c)} porting RSA, ECDSA, & EdDSA

i

2. private set intersection
{mj}; Y

each party has set of items;
client learns intersection;
server learns whether empty

{mi}in{mj}; ——n=0?

technical overview & contributions

client (with {sk;};): server (with {pk;};):
1. anonymous multi-KEM

c c.{mj}; — EnC({ij}j) single MKEM construction sup-

{m,. = Dec(sk, c)} porting RSA, ECDSA, & EADSA

i

{(m}; 2. private set intersection

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

{mi}in{mj}; ——n=0?

technical overview & contributions

client (with {sk;};): server (with {pk;}:):
{ (st phih) 1. anonymous multi-KEM

c c.{mj}; — EnC({ij}j) single MKEM construction sup-

{ﬁi := Dec(sk;, c)} porting RSA, ECDSA, & EdDSA

i

2. private set intersection
{mj}; Y

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

{mi}in{mj}; ——n=0?

+ full UC security analysis

concrete performance (in OpenSSH):

of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
client server time comm time comm

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh

concrete performance (in OpenSSH):

of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
client server time comm time comm
) 10 60 ms 12 kB 9 ms 8 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh

concrete performance (in OpenSSH):

of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
client server time comm time comm
5 10 60 ms 12 kB 9 ms 8 kB
20 100 320 ms 53 kB 28 ms 12 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh

concrete performance (in OpenSSH):

of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
client server time comm time comm
5 10 60 ms 12 kB 9 ms 8 kB
20 100 320 ms 53 kB 28 ms 12 kB
20 1000 1200 ms 460 kB 214 ms 41 kB

github.com/osu-crypto/PSIPK-ssh

2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh

client server

set of secret keys — <— set of “authorized” public keys

our protocol
of server keys;

of client keys;
identity of authorized keys

were any of them authorized?

v efficient, practical
v mixture of existing RSA & EC keys

v safe without special per-site configuration

github.com/osu-crypto/PSIPK-ssh ia.cr/2022/740

https://github.com/osu-crypto/PSIPK-ssh
https://ia.cr/2022/740

client server

set of secret keys — <— set of “authorized” public keys

our protocol
of server keys;

of client keys;
identity of authorized keys

were any of them authorized?

v efficient, practical

/
v mixture of existing RSA & EC keys tha n k Sic

v safe without special per-site configuration

github.com/osu-crypto/PSIPK-ssh ia.cr/2022/740

https://github.com/osu-crypto/PSIPK-ssh
https://ia.cr/2022/740

(backup slides)

github over SSH:

client github.com

authenticate server

username = git

Y

negotiate choice of pk

\ AR/

Al A

authenticate

>

commit to repositoryname

github over SSH:

client github.com

authenticate server

Y

username = git

Y

negotiate choice of pk
..

\ AR/

Al A

authenticate

>

commit to repositoryname

github over SSH:

client github.com

authenticate server

Y

username = git > server must decide set of authorized keys
before running our protocol!

negotiate choice of pk
..

\ AR/

Al A

authenticate

commit to repositoryname

github over SSH:

client github.com

authenticate server

Y

username = git

tiate choice of pk
negotiate choice of p

¢

\ AR/

Al A

authenticate

commit to repositoryname

> server must decide set of authorized keys
before running our protocol!

> server does not know repository name yet!

github over SSH:

client new.github.com

authenticate server

>

<

> server must decide set of authorized keys

username = repositoryname
> before running our protocol!

our > server does not know repository name yet!

protocol -~

> use repository name as username

commit

A\

anonymous multi-KEM

1. anonymous multi-KEM

address ciphertext to {pk;};
skj decrypts ¢ to m;;
c hides pk; recipients

the case of EADSA/ECDSA

Alice: pky = g°
Bob: pkp = g 1. anonymous multi-KEM
Charlie: pkc = g¢ address ciphertext to {pk;};

skj decrypts ¢ to m;;
c hides pk; recipients

the case of EADSA/ECDSA

Alice: pky = g°
Bob: pkp = g 1. anonymous multi-KEM
Charlie: pkc = g¢ address ciphertext to {pk;};

ciphertext = g" skj decrypts ¢ to m;;
< c hides pk; recipients

the case of EADSA/ECDSA

Alice: pky = g°
Bob: pkp = g 1. anonymous multi-KEM
Charlie: pkc = g€ address ciphertext to {pk;};

ciphertext = g" skj decrypts ¢ to m;;
< c hides pk; recipients

Alice will decrypt to (pka)”
Bob will decrypt to (pkg)”
Charlie will decrypt to (pkc)”

the case of EADSA/ECDSA

Alice: pky = g°
Bob: pkp = g 1. anonymous multi-KEM
Charlie: pkc = g¢ address ciphertext to {pk;};

ciphertext = g" skj decrypts ¢ to m;;
< c hides pk; recipients

Alice will decrypt to (pka)”
Bob will decrypt to (pkg)”
Charlie will decrypt to (pkc)”

ciphertext hides set of recipients; even # of them!

the case of RSA

Alice: pkA = (NA, eA)
Bob: pkB = (NB, EB)

Charlie: pkc = (Ng, ec)
1. anonymous multi-KEM

address ciphertext to {pk;};;
skj decrypts ¢ to m;;
c hides pk; recipients

the case of RSA

Alice: pkA = (NA, eA)
Bob: pkB = (NB, €B)

Charlie: pkc = (Nc, ec)

encrypt (ra)* mod Ny 1. anonymous multi-KEM

€B
encrypt (r5) mod Np address ciphertext to {pk;};;

encrypt (rc)“ mod Ne skj decrypts ¢ to m;;
c hides pk; recipients

the case of RSA

Alice: pkA = (NA, eA)
Bob: pkB = (NB, €B)

Charlie: pkc = (Nc, ec)

encrypt (ra)* mod Ny 1. anonymous multi-KEM

€B
encrypt (r5) mod Np address ciphertext to {pk;};;

encrypt (rc)“ mod Ne skj decrypts ¢ to m;;
c hides pk; recipients

interpolate poly P:

P(Ny) = (ra)*
P(Np) = (rp)*®
P(Nc) = (o)

the case of RSA

Alice: pkA = (NA, eA)
Bob: pkB = (NB, €B)

Charlie: pkc = (Nc, ec)

encrypt (ra)* mod Ny 1. anonymous multi-KEM

€B
encrypt (r5) mod Np address ciphertext to {pk;};;

encrypt (rc)“ mod Ne skj decrypts ¢ to m;;
c hides pk; recipients

interpolate poly P:

P(Ny) = (ra)*
P(Np) = (rp)*®
P(Nc) = (o)

ciphertext = P

-—

PSI with proof of nonempty intersection

2. private set intersection

each party has set of items;
client learns intersection;
server learns whether empty

oblivious PRF (OPRF) paradigm for PSI

[FreedmanlshaiPinkasReingold05]

Alice: Bob:
X ={x1,x,...} Y=A{yLy,...}

oblivious PRF (OPRF) paradigm for PSI

Alice:
X ={x1,x,...}

[FreedmanlshaiPinkasReingold05]

X1, X2, . ..

\/

OPRF

Bob:
Y = {yl, Yo, .. }

oblivious PRF (OPRF) paradigm for PSI

[FreedmanlshaiPinkasReingold05]

Alice:
X ={x1,x,...}

X1, X2, . ..

F(x), F(x), ..

OPRF

random F(+)

Bob:
Y = {yl, Yo, .. }

oblivious PRF (OPRF) paradigm for PSI

[FreedmanlshaiPinkasReingold05]

Alice: Bob:

X={x1,x2,...} X1, X2, . .. Y:{yl,yz,...}

. random F(+)
OPRF >

F(x), F(x), ..

F(yl)aF(.VZ)’ ooo

A

oblivious PRF (OPRF) paradigm for PSI

[FreedmanlshaiPinkasReingold05]

Alice:

X ={x1,x,...} X1, X2, . . .

F(x), F(x), ..

OPRF

random F(+)

A

Bob:
Y = {yl, Yo, .. }

oblivious PRF (OPRF) paradigm for PSI

[FreedmanlshaiPinkasReingold05]

Alice:

X ={x1,x,...} X1, X2, . . .

F(x), F(x), ..

OPRF

random F(+)

<

Enc(F(x;), r), Enc(F(x2), 1), ...

H(r)

Bob:
Y = {yl, Yo, .. }

oblivious PRF (OPRF) paradigm for PSI

[FreedmanlshaiPinkasReingold05]

Alice:

X ={x1,x,...} X1, X2, . . .

F(x), F(x), ..

OPRF

random F(+)

A

Enc(F(x;), r), Enc(F(x2), 1), ...

H(r)

r

Bob:
Y = {yl, Yo, .. }

