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why use PSI?

® signal

The Difficulty Of Private Contact Discovery

Building a social network is not easy. Social networks have value
proportional to their size, so participants aren’t motivated to join new
social networks which aren’t already large. It's a paradox where if
people haven't already joined, people aren’t motivated to join.

{my phone contacts} N {users of your service}
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why use PSI?

® signal

The Difficulty Of Private C
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will be built into Chrome uhich arent | BTEIEE :

The tool wams users f their passwords are known tobe compromised. ready joined

Google Turns to Retro Cryptography to
Keep Data Sets Private

Google's Private Join and Compute willlet companies compare notes without divulging sensitive
information.

{people who saw ad} N {customers who made purchases}



why use PSI?

Ehe New York Times

Who Is Registered to Vote in Two
States? Some in Trump’s Inner Circle

90006 Private C

engadget

network is not easy. Social net ks have value
Ggogle‘s F_’as_sword Checkup feature 7" o w T
will be built into Chrome

which aren't |
e ready join
The tool warns users if their passwords are known to be compromised. y joined

2 | W Google Turns to Retro Cryptography to
<> [y

oot - “ b Keep Data Sets Private

Google's Private Join and Compute willlet companies compare notes without divulging sensitive
information.

{voters registered in OR} N {voters registered in NY}



motivating PSI for small sets

PSI for small sets = PSI for personal privacy
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Abstract
Apple’s offline file-sharing service AirDrop is integrated into
more than 1.5 billion end-user devices worldwide. We dis-
covered two design flaws in the underlying protocol that
allow attackers to learn the phone numbers and email ad-
dresses of both sender and receiver devices. As a reme-
diation, we study the applicability of private set intersec-
tion (PSI) to mutual authentication, which is similar to contact
discovery in mobile messengers. We propose a novel opti-
mized PSI-based protocol called PrivateDrop that addresses

stadt, Germany

@ USENIX Security 2021

the specific challenges of offline resource-constrained op-
eration and integrates seamlessly into the current AirDrop
protocol stack. Using our native PrivateDrop implementa-
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QO

PSI on small sets (hundreds)
» private availability poll

> key agreement techniques

PSI on asymmetric sets (100 : billion)

> contact discovery; password checkup

> offline phase; leakage

PQLoxn la e

—pns)

Not to mention:
» approximate/fuzzy matching

» more than 2 parties/sets

» private set union

oters

binatorial tricks

> generic MPC

computing on the intersection

> sales statistics about intersection
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running time

PSI techniques for small sets

500 1000

set size (n)

OT-based PSI:
> 128 base OTs
> O(n) symm-key ops

KA-based PSI:
> O(n) pub-key ops



Compact and Malicious
Private Set Intersection

for Small Sets

Mike Rosulek, Oregon State University
Ni Trieu, Arizona State University

appeared at ACM CCS 2021



communication (KB)

64

32

16

PSI cost: 256 items per party:

A

PRTY20 (“PaXoS”)

KKRT16
= = CM20

DKT104

PRTY19 (“spot-low”)

m HFH99 (“classic DH-PSI”)

this work
) B semi-honest
B this work A malicious
L ‘ ‘ ‘
128 256 512

running time (milliseconds)

our semi-honest PSI:

> 45% | communication
> 20% | runtime

our malicious PSI:

> 10% | communication
> 20% | runtime

vs. best semi-honest PSI!

> 75% | communication
> 55% | runtime

vs. best malicious PSI
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Alice (random oracle H : {0,1}* — G) Bob

X1, X2, . .. H(y)b H(y)b, ... Vi Y25 - -

A

compute

H(y)%, H(y,)%, ...
(y)®, H(y2) Hn) Him)e,...

H(Xl)a, H(X2)a, PN

compare H(-)* values

\ 4

Semi-honest security:
> x +— H(x)%is a PRF (DDH assumption + random oracle)

> first two messages are an oblivious PRF protocol
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Alice (random oracle H : {0,1}* — G) Bob

X1, X2, « -«

y15y2,--. y1,y2,...
—
PRFq(x1), PRFa(x), ...

Semi-honest security:

compare PRF,(-) values

\ 4

> x +— H(x)%is a PRF (DDH assumption + random oracle)

> first two messages are an oblivious PRF protocol

» standard OPRF—PSI paradigm [FreedmanlshaiPinkasReingold05]

[HubermanFranklinHogg99]
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3n group elements

A 4

Bob

Y Yo,

compute:

H(y1)® = (H()?'

H(y,)" =

(H(y2)*)

how could you possibly reduce communication?

—1
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Alice Bob
X1, X2, . .. H(yl)”,H(yz)”,... Vi Y2 - -

H(yl)ab,EM ye e

H(xl)“, H(XZ)a, .

A

(H(Y)®)r
™= (H(y»)%)"

\ 4

3n group elements

how could you possibly reduce communication?

replace random oracle with some “trapdoored” function

... where Bob knows dlog relationships between outputs



our approach:

polynomial interpolation!
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correctness:  Bob knows dlog of P(y) for programmed points v/
obliviousness:  description of P doesn’t leak choice of programmed points v
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Alice

Bob
X1, X25 - - - Y, Y2, -
2n+ 1 group elements
interpolate poly P:
b coefficients of P P(y) =gh

a

g

compute

P(y)*=(g

A 4

a)bi
P(xl)“, P(X2)a, e

\ 4

compare P(-)* values

correctness:  Bob knows dlog of P(y) for programmed points v/
obliviousness:  description of P doesn’t leak choice of programmed points v
efficiency: |description of P| = n group elements v
P(-)%is PRF: Bob cannot know dlog of any other P(x) 77
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interpolate so that: interpolate so that:
P(y) = g" P(y;) =117 (g")
?7? U 27 U V4
other P(x) outputs simulator can program
have unknown dlog other TI(P(x)) outputs

Ideal permutation model: all parties have oracle access to random IT, IT™*
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our real protocol (fine print):

Alice Bob
X1, X25 + -« Y, Y2, .-
2n+ 1 group elements
interpolate poly P:
~ coefficients of P P(y;) =11""(g")

a compute

II(P(y:))* = (g

g a) bi

A 4

I1(P(x1)) IL(P(x2))%, . ..

compare II(P(-))% values

A 4

semi-honest:  Alice’s group elements can be truncated

malicious: a few more strategic RO calls (to help simulator extract)
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SSH client SSH server

should I authenticate
with pub key 6c6c6568...7

no

should I authenticate
with pub key 73616664...7

-

no

yes

signature

A




SSH client SSH server problem: server can fingerprint client:

should I authenticate > refuse all advertisements = learn all keys
with pub key 6c6c6568...7
N

) (no) "

N

should I authenticate
with pub key 73616664...7
P

) (o) ]

D v




SSH client

shot
with p

shou
with pt

SSH server nrohlona. cnweae

- ~

SSH WHOAMLFILIPPO.IO

Here's a fun PoC | built thanks to Ben's dataset.

bens daldst:

| don't want to ruin the surprise. so just try this command. (It's harmless.)

ssh whoami.filippo.io

For the security crowd: don't worry. | don't have any OpenSSH oday and evenif | did |
wouldn't burn them on my blog. Also, ssh is designed to log into untrusted servers.

Filippo Valsorda https: //words . filippo. i0/ssh-whoami- filippo-io/

[ keys


https://words.filippo.io/ssh-whoami-filippo-io/

SSH client

shot
with p

shou
with pt

[[kochanski:~1$ ssh whoami.filippo.io

_o/ Hello Mike Rosulek!
pid you know that ssh sends all your public keys to any server
it tries to authenticate to?
That's how we know you are @rosulek on GitHub!

|

|

|

|

|

|

|

|

|

| Ah, maybe what you didn't know is that GitHub publishes all users'
| ssh public keys. Myself, I learned it from Ben (benjojo.co.uk).
|
|
|
|
|
|
|
|
|
|

That's pretty handy at times :) for example your key is at
https://github.com/rosulek.keys

—- @FiloSottile (https://twitter.com/FilcScttile)

p.S. The source of this server is at
https://github.cum/FiloSottile/whcami.filippu.io

Connection to whoami.filippo.io closed.

[ keys
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|

|

|

|

|

|

|

|

| S

| Ah, maybe what you didn't know is that GitHub publishes all users'
| ssh public keys. Myself, I learned it from Ben (benjojo.co.uk).
|
|
|
|
|
|
|
|
|
|

That's pretty handy at times :) for example your key is at
https://github.com/rosulek.keys

—- @FiloSottile (https://twitter.com/FilcScttile)

p.S. The source of this server is at
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SSH client SSH server problem: server can fingerprint client:

should I authenticate > refuse all advertisements = learn all keys
with pub key 6c6c6568...7
N

) (no) "

N

> can configure client to send only “correct” key

should I authenticate
with pub key 73616664...7
P

) (o) ]

D \—/




SSH client SSH server problem: server can fingerprint client:

should I authenticate > refuse all advertisements = learn all keys
with Bob’s pub key?
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~ problem: client can probe server:

> can configure client to send only “correct” key

> offer someone else’s pub key, observe response

> pre-emptive signatures possible (in principle)



SSH client SSH server problem: server can fingerprint client:

should I authenticate > refuse all advertisements = learn all keys
with pub key 6C6C6568“;? > can configure client to send only “correct” key
no

~ problem: client can probe server:

> offer someone else’s pub key, observe response

should I authenticate > pre-emptive signatures possible (in principle)
with pub key 73616664...7
> problem: server sees which key was used:
no
< » and can prove it! = authentication not deniable

» fundamental to protocol

yes

signature

A




SSH client SSH server
should I authenticate

with pub key 6c6c6568...7

(res)

N—

>

problem: server can fingerprint client:
> refuse all advertisements = learn all keys

> can configure client to send only “correct” key

problem: client can probe server:
> offer someone else’s pub key, observe response

> pre-emptive signatures possible (in principle)

problem: server sees which key was used:
» and can prove it! = authentication not deniable

» fundamental to protocol

problem: server can act as honeypot:
> accept any key, even ones never seen before

> fundamental to protocol



goals of this work

1 server & client should learn minimal information


https://github.blog/2021-09-01-improving-git-protocol-security-github/

goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys


https://github.blog/2021-09-01-improving-git-protocol-security-github/

EOdlS of thic awnrl

Requests by signature type

ecdsa-sha2

ssh-ed26519 ssh-dss
7.3% 0.3%

https://github. blog/2021-69-01-1imp roving-git-protocol-secu rity-github/



https://github.blog/2021-09-01-improving-git-protocol-security-github/

goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

3 minimize reliance on per-site configuration


https://github.blog/2021-09-01-improving-git-protocol-security-github/

our new authentication method: big picture

client server
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our protocol

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt
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our new authentication method: big picture

client P server
Skl, Sk4, Skg — | pkl,pkz, ceey pk6
our protocol
server has 6 keys, client has 3 keys, including
including pk; and pk, at least one of {sk;, ..., sks}

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

> does not depend on site-specific configuration;
safe to use all keys in every authentication attempts

> client won’t connect unless server knows and explicitly
includes one of client’s keys
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client (with {sk;};): server (with {pk;}:):
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client (with {sk;};): server (with {pk;}:):
{ (st phih) 1. anonymous multi-KEM

c c.{mj}; — EnC({ij}j) single MKEM construction sup-

{ﬁi := Dec(sk;, c)} porting RSA, ECDSA, & EdDSA

i

2. private set intersection
{mj}; Y

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

{mi}in{mj}; ——n=0?

+ full UC security analysis
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# of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
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5 10 60 ms 12 kB 9 ms 8 kB
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github over SSH:

client new.github.com

authenticate server

>

<

> server must decide set of authorized keys

username = repositoryname
> before running our protocol!

our > server does not know repository name yet!

protocol -~

> use repository name as username

commit

A\
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the case of RSA

Alice: pkA = (NA, eA)
Bob: pkB = (NB, €B)

Charlie: pkc = (Nc, ec)

encrypt (ra)* mod Ny 1. anonymous multi-KEM

€B
encrypt (r5) mod Np address ciphertext to {pk;};;

encrypt (rc)“ mod Ne skj decrypts ¢ to m;;
c hides pk; recipients

interpolate poly P:

P(Ny) = (ra)*
P(Np) = (rp)*®
P(Nc) = (o)

ciphertext = P

-—



PSI with proof of nonempty intersection

2. private set intersection

each party has set of items;
client learns intersection;
server learns whether empty
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