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Despite their strong positive average returns across numerous asset classes, momentum 

strategies can experience infrequent and persistent strings of negative returns. These mo- 

mentum crashes are partly forecastable. They occur in panic states, following market de- 

clines and when market volatility is high, and are contemporaneous with market rebounds. 

The low ex ante expected returns in panic states are consistent with a conditionally high 

premium attached to the option like payoffs of past losers. An implementable dynamic 

momentum strategy based on forecasts of momentum’s mean and variance approximately 

doubles the alpha and Sharpe ratio of a static momentum strategy and is not explained 

by other factors. These results are robust across multiple time periods, international equity 

markets, and other asset classes. 
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1. Introduction 

A momentum strategy is a bet on past returns pre-

dicting the cross section of future returns, typically im-

plemented by buying past winners and selling past losers.

Momentum is pervasive: the academic literature shows the

efficacy of momentum strategies across multiple time pe-

riods, in many markets, and in numerous asset classes. 1 
∗ Corresponding author at: Yale School of Management, New Haven, CT 

USA. Tel: (203) 436-5361; Fax: (203) 742-3257. 

E-mail address: Tobias.Moskowitz@yale.edu (T.J. Moskowitz). 
1 Momentum strategies were first shown in US common stock re- 

turns from 1965 to 1989 by Jegadeesh and Titman (1993) and Asness 

(1994) , by sorting firms on the basis of three- to 12-month past re- 

turns. Subsequently, Jegadeesh and Titman (2001) show the continuing 

efficacy of US equity momentum portfolios in common stock returns in 

the 1990 to 1998 period. Israel and Moskowitz (2013) show the robust- 

ness of momentum prior to and after these studies from 1927 to 1965 

and from 1990 to 2012. Evidence of momentum going back to the Vic- 

torian age from Chabot, Ghysels, and Jagannathan (2009) and for 1801 

to 2012 from Geczy and Samonov (2015) in what the authors call “the 

world’s longest backtest.” Moskowitz and Grinblatt (1999) find momen- 

tum in industry portfolios. Rouwenhorst (1998) ; 1999 ) finds momentum 
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However, the strong positive average returns and

Sharpe ratios of momentum strategies are punctuated with

occasional crashes. Like the returns to the carry trade in

currencies (e.g., Brunnermeier, Nagel, and Pedersen, 2008 ),

momentum returns are negatively skewed, and the neg-

ative returns can be pronounced and persistent. In our

1927–2013 US equity sample, the two worst months for a

momentum strategy that buys the top decile of past 12-

month winners and shorts the bottom decile of losers are

consecutive: July and August of 1932. Over this short pe-

riod, the past-loser decile portfolio returned 232% and the

past-winner decile portfolio had a gain of only 32%. In

a more recent crash, over the three-month period from

March to May of 2009, the past-loser decile rose by 163%

and the decile portfolio of past winners gained only 8%. 
in developed and emerging equity markets, respectively. Asness, Liew, and 

Stevens (1997) find momentum in country indices. Okunev and White 

(2003) find momentum in currencies; Erb and Harvey (2006) in com- 

modities and Moskowitz, Ooi, and Pedersen (2012) in exchange traded 

futures contracts. Asness, Moskowitz, and Pedersen (2013) integrate this 

evidence across markets and asset classes and find momentum in bonds 

as well. 
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We investigate the impact and potential predictability 

of these momentum crashes, which appear to be a key 

and robust feature of momentum strategies. We find that 

crashes tend to occur in times of market stress, when 

the market has fallen and ex ante measures of volatility 

are high, coupled with an abrupt rise in contemporaneous 

market returns. 

Our result is consistent with that of Cooper, Gutier- 

rez, and Hameed (2004) and Stivers and Sun (2010) , who 

find, respectively, that the momentum premium falls when 

the past three-year market return has been negative and 

that the momentum premium is low when market volatil- 

ity is high. Cooper, Gutierrez, and Hameed (2004) offer 

a behavioral explanation for these facts that may also be 

consistent with momentum performing particularly poorly 

during market rebounds if those are also times when as- 

sets become more mispriced. However, we investigate an- 

other source for these crashes by examining conditional 

risk measures. 

The patterns we find are suggestive of the changing 

beta of the momentum portfolio partly driving the mo- 

mentum crashes. The time variation in betas of return- 

sorted portfolios was first shown by Kothari and Shanken 

(1992) , who argue that, by their nature, past-return sorted 

portfolios have significant time-varying exposure to sys- 

tematic factors. Because momentum strategies are long 

past winners and short past losers, they have positive load- 

ings on factors which have had a positive realization, and 

negative loadings on factors that have had negative re- 

alizations, over the formation period of the momentum 

strategy. 

Grundy and Martin (2001) apply Kothari and Shanken’s 

insights to price momentum strategies. Intuitively, the re- 

sult is straightforward, if not often appreciated: when the 

market has fallen significantly over the momentum forma- 

tion period (in our case from 12 months ago to one month 

ago) a good chance exists that the firms that fell in tandem 

with the market were and are high-beta firms, and those 

that performed the best were low-beta firms. Thus, follow- 

ing market declines, the momentum portfolio is likely to 

be long low-beta stocks (the past winners) and short high- 

beta stocks (the past losers). We verify empirically that 

dramatic time variation exists in the betas of momentum 

portfolios. We find that, following major market declines, 

betas for the past-loser decile can rise above 3 and fall 

below 0.5 for past winners. Hence, when the market re- 

bounds quickly, momentum strategies crash because they 

have a conditionally large negative beta. 

Grundy and Martin (2001) argue that performance of 

momentum strategies is dramatically improved, particu- 

larly in the pre-World War II era, by dynamically hedg- 

ing market and size risk. However, their hedged portfo- 

lio is constructed based on forward-looking betas, and is 

therefore not an implementable strategy. We show that 

this results in a strong bias in estimated returns and that 

a hedging strategy based on ex ante betas does not ex- 

hibit the performance improvement noted in Grundy and 

Martin (2001) . 

The source of the bias is a striking correlation of the 

loser-portfolio beta with the contemporaneous return on 

the market. Using a Henriksson and Merton (1981) specifi- 
cation, we calculate up- and down-betas for the momen- 

tum portfolios and show that, in a bear market, a mo- 

mentum portfolio’s up-market beta is more than double its 

down-market beta ( −1 . 51 versus −0 . 70 with a t -statistic of

the difference = 4 . 5 ). Outside of bear markets, there is no

statistically reliable difference in betas. 

More detailed analysis reveals that most of the up- ver- 

sus down-beta asymmetry in bear markets is driven by 

the past losers. This pattern in dynamic betas of the loser 

portfolio implies that momentum strategies in bear mar- 

kets behave like written call options on the market; that 

is, when the market falls, they gain a little, but when the 

market rises, they lose much. 

Consistent with the written call option like behavior 

of the momentum strategy in bear markets, we show that 

the momentum premium is correlated with the strategy’s 

time-varying exposure to volatility risk. Using volatility 

index (VIX) imputed variance swap returns, we find that 

the momentum strategy payoff has a strong negative ex- 

posure to innovations in market variance in bear markets, 

but not in normal (bull) markets. However, we also show 

that hedging out this time- varying exposure to market 

variance (by buying Standard & Poor’s (S&P) variance 

swaps in bear markets, for instance) does not restore 

the profitability of momentum in bear markets. Hence, 

time-varying exposure to volatility risk does not explain 

the time variation in the momentum premium. 

Using the insights developed about the forecastability 

of momentum payoffs, and the fact that the momentum 

strategy volatility is itself predictable and distinct from 

the predictability in its mean return, we design an opti- 

mal dynamic momentum strategy in which the winner- 

minus-loser (WML) portfolio is levered up or down over 

time so as to maximize the unconditional Sharpe ratio of 

the portfolio. We first show theoretically that, to maximize 

the unconditional Sharpe ratio, a dynamic strategy should 

scale the WML weight at each particular time so that the 

dynamic strategy’s conditional volatility is proportional to 

the conditional Sharpe ratio of the strategy. This insight 

comes directly from an intertemporal version of the stan- 

dard Markowitz (1952) optimization problem. Then, using 

the results from our analysis on the forecastability of both 

the momentum premium and momentum volatility, we es- 

timate these conditional moments to generate the dynamic 

weights. 

We find that the optimal dynamic strategy significantly 

outperforms the standard static momentum strategy, more 

than doubling its Sharpe ratio and delivering significant 

positive alpha relative to the market, Fama and French fac- 

tors, the static momentum portfolio, and conditional ver- 

sions of all of these models that allow betas to vary in the 

crash states. In addition, the dynamic momentum strat- 

egy significantly outperforms constant volatility momen- 

tum strategies suggested in the literature (e.g., Barroso and 

Santa-Clara (2015) ), producing positive alpha relative to 

the constant volatility strategy and capturing the constant 

volatility strategy’s returns in spanning tests. The dynamic 

strategy not only helps smooth the volatility of momen- 

tum portfolios, as does the constant volatility approach, 

but also exploits the strong forecastability of the momen- 

tum premium. 
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2 Daily and monthly returns to these portfolios, and additional details 

on their construction, are available at Kent Daniel’s website: http://www. 

kentdaniel.net/data.php . 
3 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data _ library. 

html . 
Given the paucity of momentum crashes and the perni-

cious effects of data mining from an ever-expanding search

across studies (and in practice) for strategies that improve

performance, we challenge the robustness of our findings

by replicating the results in different sample periods, four

different equity markets, and five distinct asset classes.

Across different time periods, markets, and asset classes,

we find remarkably consistent results. First, the results

are robust in every quarter-century subsample in US

equities. Second, momentum strategies in all markets and

asset classes suffer from crashes, which are consistently

driven by the conditional beta and option-like feature of

losers. The same option-like behavior of losers in bear

markets is present in Europe, Japan, and the UK and is a

feature of index futures-, commodity-, fixed income-, and

currency-momentum strategies. Third, the same dynamic

momentum strategy applied in these alternative markets

and asset classes is ubiquitously successful in generating

superior performance over the static and constant volatil-

ity momentum strategies in each market and asset class.

The additional improvement from dynamic weighting is

large enough to produce significant momentum profits

even in markets in which the static momentum strategy

has famously failed to yield positive profits, e.g., Japan.

Taken together, and applied across all markets and asset

classes, an implementable dynamic momentum strategy

delivers an annualized Sharpe ratio of 1.19, which is four

times larger than that of the static momentum strategy

applied to US equities over the same period and thus

poses an even greater challenge for rational asset pricing

models ( Hansen and Jagannathan, 1991 ). 

Finally, we consider several possible explanations for

the option-like behavior of momentum payoffs, particularly

for losers. For equity momentum strategies, one possibility

is that the optionality arises because a share of common

stock is a call option on the underlying firm’s assets when

there is debt in the capital structure ( Merton, 1974 ). Partic-

ularly in distressed periods when this option-like behav-

ior is manifested, the underlying firm values among past

losers have generally suffered severely and are, therefore

potentially much closer to a level in which the option con-

vexity is strong. The past winners, in contrast, would not

have suffered the same losses and are likely still in-the-

money. While this explanation seems to have merit for eq-

uity momentum portfolios, this hypothesis does not seem

applicable for index future, commodity, fixed income, and

currency momentum, which also exhibit option-like behav-

ior. In the conclusion, we briefly discuss a behaviorally mo-

tivated possible explanation for these option-like features

that could apply to all asset classes, but a fuller under-

standing of these convex payoffs is an open area for future

research. 

The layout of the paper is as follows: Section 2 de-

scribes the data and portfolio construction and dissects

momentum crashes in US equities. Section 3 measures the

conditional betas and option-like payoffs of losers and as-

sesses to what extent these crashes are predictable based

on these insights. Section 4 examines the performance of

an optimal dynamic strategy based on our findings and

whether its performance can be explained by dynamic

loadings on other known factors or other momentum
strategies proposed in the literature. Section 5 examines

the robustness of our findings in different time periods,

international equity markets, and other asset classes.

Section 6 concludes by speculating about the sources of

the premia we observe and discusses areas for future

research. 

2. US equity momentum 

In this section, we present the results of our analysis of

momentum in US common stocks over the 1927–2013 time

period. 

2.1. US equity data and momentum portfolio construction 

Our principal data source is the Center for Research

in Security Prices (CRSP). We construct monthly and daily

momentum decile portfolios, both of which are rebalanced

at the end of each month. The universe starts with all

firms listed on NYSE, Amex, or Nasdaq as of the forma-

tion date, using only the returns of common shares (with

CRSP sharecode of 10 or 11). We require that a firm have

a valid share price and number of shares as of the forma-

tion date and that there be a minimum of eight monthly

returns over the past 11 months, skipping the most recent

month, which is our formation period. Following conven-

tion and CRSP availability, all prices are closing prices, and

all returns are from close to close. 

To form the momentum portfolios, we first rank stocks

based on their cumulative returns from 12 months before

to one month before the formation date (i.e., the t − 12

to t − 2 -month returns), where, consistent with the liter-

ature ( Jegadeesh and Titman, 1993; Asness, 1994; Fama

and French, 1996 ), we use a one-month gap between the

end of the ranking period and the start of the holding pe-

riod to avoid the short-term reversals shown by Jegadeesh

(1990) and Lehmann (1990) . All firms meeting the data re-

quirements are then placed into one of ten decile portfo-

lios based on this ranking, where portfolio 10 represents

the winners (those with the highest past returns) and port-

folio 1 the losers. The value-weighted (VW) holding pe-

riod returns of the decile portfolios are computed, in which

portfolio membership does not change within a month ex-

cept in the case of delisting. 2 

The market return is the value weighted index of all

listed firms in CRSP and the risk free rate series is the one-

month Treasury bill rate, both obtained from Ken French’s

data library. 3 We convert the monthly risk-free rate series

to a daily series by converting the risk-free rate at the be-

ginning of each month to a daily rate and assuming that

that daily rate is valid throughout the month. 

2.2. Momentum portfolio performance 

Fig. 1 presents the cumulative monthly returns from

1927:01 to 2013:03 for investments in the risk-free asset,

http://www.kentdaniel.net/data.php
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Fig. 1. Winners and losers, 1927–2013. Plotted are the cumulative returns to four assets: (1) the risk-free asset; (2) the Center for Research in Security 

Prices (CRSP) value-weighted index; (3) the bottom decile “past loser” portfolio and (4) the top decile “past winner” portfolio over the full sample period 

1927:01 to 2013:03. To the right of the plot we tabulate the final dollar values for each of the four portfolios, given a $1 investment in January 1927. 

Table 1 

Momentum portfolio characteristics, 1927:01–2013:03. 

This table presents characteristics of the monthly momentum decile portfolio excess returns over the 87-year full sample period from 1927:01 through 

2013:03. The decile 1 portfolio—the loser portfolio—contains the 10% of stocks with the worst losses, and decile 10—the winner portfolio—contains the 10% 

of the stocks with the largest gains. WML is the zero-investment winner-minus-loser portfolio which is long the Decile 1 and short the Decile 10 portfolio. 

The mean excess return, standard deviation, and alpha are in percent, and annualized. SR denotes the annualized Sharpe Ratio. The α, t ( α), and β are 

estimated from a full-period regression of each decile portfolio’s excess return on the excess Center for Research in Securities Prices value-weighted index. 

For all portfolios except WML, sk (m) denotes the full-period realized skewness of the monthly log returns (not excess) to the portfolios and sk (d) denotes 

the full-period realized skewness of the daily log returns. For WML, sk is the realized skewness of log (1 + r WML + r f ) . 

Return statistic Momentum decile portfolios WML Market 

1 2 3 4 5 6 7 8 9 10 

r − r f −2.5 2.9 2.9 6.4 7.1 7.1 9.2 10.4 11.3 15.3 17.9 7.7 

σ 36.5 30.5 25.9 23.2 21.3 20.2 19.5 19.0 20.3 23.7 30.0 18.8 

α −14.7 −7.8 −6.4 −2.1 −0.9 −0.6 1.8 3.2 3.8 7.5 22.2 0 

t ( α) ( −6.7) ( −4.7) ( −5.3) ( −2.1) ( −1.1) ( −1.0) (2.8) (4.5) (4.3) (5.1) (7.3) (0) 

β 1.61 1.41 1.23 1.13 1.05 1.02 0.98 0.95 0.99 1.03 −0.58 1 

SR −0.07 0.09 0.11 0.28 0.33 0.35 0.47 0.54 0.56 0.65 0.60 0.41 

sk (m) 0.09 −0.05 −0.19 0.21 −0.13 −0.30 −0.55 −0.54 −0.76 −0.82 −4.70 −0.57 

sk (d) 0.12 0.29 0.22 0.27 0.10 −0.10 −0.44 −0.66 −0.67 −0.61 −1.18 −0.44 
the market portfolio, the bottom decile past loser portfolio, 

and the top decile past winner portfolio. On the right side 

of the plot, we present the final dollar values for each of 

the four portfolios, given a $1 investment in January 1927 

(and assuming no transaction costs). 

Consistent with the existing literature, a strong momen- 

tum premium emerges over the last century. The winners 

significantly outperform the losers and by much more than 

equities have outperformed Treasuries. Table 1 presents re- 

turn moments for the momentum decile portfolios over 

this period. The winner decile excess return averages 15.3% 

per year, and the loser portfolio averages - 2.5% per year. 

In contrast, the average excess market return is 7.6%. The 
Sharpe ratio of the WML portfolio is 0.71, and that of the 

market is 0.40. Over this period, the beta of the WML port- 

folio is negative, −0.58, giving it an unconditional capi- 

tal asset pricing model (CAPM) alpha of 22.3% per year 

( t -statistic = 8.5). Consistent with the high alpha, an ex 

post optimal combination of the market and WML portfo- 

lio has a Sharpe ratio more than double that of the market. 

2.3. Momentum crashes 

The momentum strategy’s average returns are large and 

highly statistically significant, but since 1927 there have 

been a number of long periods over which momentum 
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4 We use ten daily lags of the market return in estimating the market 

betas. We estimate a daily regression specification of the form 

˜ r e i,t = β0 ̃ r e m,t + β1 ̃ r e m,t−1 + · · · + β10 ̃ r e m,t−10 + ̃  εi,t 

and then report the sum of the estimated coefficients ˆ β0 + 

ˆ β1 + · · · + 

ˆ β10 . 

Particularly for the past loser portfolios, and especially in the pre-WWII 

period, the lagged coefficients are strongly significant, suggesting that 

market wide information is incorporated into the prices of many of the 

firms in these portfolios over the span of multiple days. See Lo and 

MacKinlay (1990) and Jegadeesh and Titman (1995) . 
under-performed dramatically. Fig. 1 highlights two mo-

mentum crashes June 1932 to December 1939 and March

2009 to March 2013. These periods represent the two

largest sustained drawdown periods for the momentum

strategy and are selected purposely to illustrate the crashes

we study more generally in this paper. The starting dates

for these two periods are not selected randomly March

2009 and June 1932 are, respectively, the market bottoms

following the stock market decline associated with the re-

cent financial crisis and with the market decline from the

great depression. 

Zeroing in on these crash periods, Fig. 2 shows the cu-

mulative daily returns to the same set of portfolios from

Fig. 1 —risk-free, market, past losers, past winners—over

these subsamples. Over both of these periods, the loser

portfolio strongly outperforms the winner portfolio. From

March 8, 2009 to March 28, 2013, the losers produce more

than twice the profits of the winners, which also under-

perform the market over this period. From June 1, 1932 to

December 30, 1939 the losers outperform the winners by

50%. 

Table 1 also shows that the winner portfolios are con-

siderably more negatively skewed (monthly and daily) than

the loser portfolios. While the winners still outperform the

losers over time, the Sharpe ratio and alpha understate

the significance of these crashes. Looking at the skewness

of the portfolios, winners become more negatively skewed

moving to more extreme deciles. For the top winner decile

portfolio, the monthly (daily) skewness is −0.82 ( −0.61),

and while for the most extreme bottom decile of losers

the skewness is 0.09 (0.12). The WML portfolio over this

full sample period has a monthly (daily) skewness of −4.70

( −1.18). 

Table 2 presents the 15 worst monthly returns to the

WML strategy, as well as the lagged two-year returns

on the market and the contemporaneous monthly mar-

ket return. Five key points emerge from Table 2 and from

Figs. 1 and 2 . 

1. While past winners have generally outperformed past

losers, there are relatively long periods over which mo-

mentum experiences severe losses or crashes. 

2. Fourteen of the 15 worst momentum returns occur

when the lagged two-year market return is negative. All

occur in months in which the market rose contempora-

neously, often in a dramatic fashion. 

3. The clustering evident in Table 2 and in the daily cumu-

lative returns in Fig. 2 makes it clear that the crashes

have relatively long duration. They do not occur over

the span of minutes or days; a crash is not a Poisson

jump. They take place slowly, over the span of multiple

months. 

4. Similarly, the extreme losses are clustered. The two

worst months for momentum are back-to-back, in July

and August of 1932, following a market decline of

roughly 90% from the 1929 peak. March and April of

2009 are the seventh and fourth worst momentum

months, respectively, and April and May of 1933 are the

sixth and 12th worst. Three of the ten worst momen-

tum monthly returns are from 2009, a three-month pe-

riod in which the market rose dramatically and volatil-
ity fell. While it might not seem surprising that the

most extreme returns occur in periods of high volatility,

the effect is asymmetric for losses versus gains. The ex-

treme momentum gains are not nearly as large in mag-

nitude or as concentrated in time. 

5. Closer examination reveals that the crash performance

is mostly attributable to the short side or the perfor-

mance of losers. For example, in July and August of

1932, the market rose by 82%. Over these two months,

the winner decile rose by 32%, but the loser decile was

up by 232%. Similarly, over the three- month period

from March to May of 2009, the market was up by 26%,

but the loser decile was up by 163%. Thus, to the extent

that the strong momentum reversals we observe in the

data can be characterized as a crash, they are a crash in

which the short side of the portfolio—the losers—crash

up, not down. 

Table 2 also suggests that large changes in market beta

can help to explain some of the large negative returns

earned by momentum strategies. For example, as of the

beginning of March 2009, the firms in the loser decile

portfolio were, on average, down from their peak by 84%.

These firms included those hit hardest by the financial cri-

sis: Citigroup, Bank of America, Ford, GM, and International

Paper (which was highly levered). In contrast, the past

winner portfolio was composed of defensive or counter

cyclical firms such as Autozone. The loser firms, in particu-

lar, were often extremely levered and at risk of bankruptcy.

In the sense of the Merton (1974) model, their common

stock was effectively an out-of-the-money option on the

underlying firm value. This suggests that potentially large

differences exist in the market betas of the winner and

loser portfolios that generate convex, option-like payoffs. 

3. Time-varying beta and option-like payoffs 

To investigate the time-varying betas of winners and

losers, Fig. 3 plots the market betas for the winner and

loser momentum deciles, estimated using 126-day ( ≈ six

month) rolling market model regressions with daily data. 4

Fig. 3 plots the betas over three non overlapping subsam-

ples that span the full sample period: June 1927 to De-

cember 1939, January 1940 to December 1999, and January

20 0 0 to March 2013. 

The betas vary substantially, especially for the loser

portfolio, whose beta tends to increase dramatically dur-

ing volatile periods. The first and third plots highlight the

betas several years before, during, and after the momen-

tum crashes. The beta of the winner portfolio is some-

times above 2 following large market rises, but, for the
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Fig. 2. Momentum crashes, following the Great Depression and the 20 08–20 09 financial crisis. These plots show the cumulative daily returns to four 

portfolios: (1) the risk-free asset, (2) the Center for Research in Security Prices (CRSP) value-weighted index, (3) the bottom decile past loser portfolio; and 

(4) the top decile past winner portfolio over the period from March 9, 2009 through March 28 2013 (Panel A) and from June 1, 1932 through December 

30, 1939 (Panel B). 
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Table 2 

Worst monthly momentum returns. 

This table lists the 15 worst monthly returns to the winner-minus-loser 

(WML) momentum portfolio over the 1927:01–2013:03 time period. Also 

tabulated are Mkt-2y, the two-year market returns leading up to the port- 

folio formation date, and Mkt t , the contemporaneous market return. The 

dates between July 1932 and September 1939 are marked with an aster- 

isk ( ∗), those between April and August of 2009 with † , and those from 

January 2001 and November 2002 with ‡ . All numbers in the table are in 

percent. 

Rank Month WML t MKT-2y Mkt t 

1 1932:08 ∗ −74 .36 −67 .77 36 .49 

2 1932:07 ∗ −60 .98 −74 .91 33 .63 

3 2001:01 ‡ −49 .19 10 .74 3 .66 

4 2009:04 † −45 .52 −40 .62 10 .20 

5 1939:09 ∗ −43 .83 −21 .46 16 .97 

6 1933:04 ∗ −43 .14 −59 .00 38 .14 

7 2009:03 † −42 .28 −44 .90 8 .97 

8 2002:11 ‡ −37 .04 −36 .23 6 .08 

9 1938:06 ∗ −33 .36 −27 .83 23 .72 

10 2009:08 † −30 .54 −27 .33 3 .33 

11 1931:06 ∗ −29 .72 −47 .59 13 .87 

12 1933:05 ∗ −28 .90 −37 .18 21 .42 

13 2001:11 ‡ −25 .31 −19 .77 7 .71 

14 2001:10 ‡ −24 .98 −16 .77 2 .68 

15 1974:01 −24 .04 −5 .67 0 .46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 The result that the betas of winner-minus-loser portfolios are non- 

linearly related to contemporaneous market returns has also been shown 

in Rouwenhorst (1998) who finds this feature for non-US equity momen- 

tum strategies (Table V, p. 279). Chan (1988) and DeBondt and Thaler 

(1987) show this nonlinearity for longer-term winner and loser portfolios. 

However, Boguth, Carlson, Fisher, and Simutin (2011) , building on the re- 

sults of Jagannathan and Korajczyk (1986) , note that the interpretation of 

the measures of abnormal performance (i.e., the alphas) in Chan (1988) , 

Grundy and Martin (2001) , and Rouwenhorst (1998) are problematic and 

provide a critique of Grundy and Martin (2001) and other studies that 

overcondition in a similar way. 
6 Of the 1,035 months in the 1927:01-2013:03 period, I B,t−1 = 1 in 183, 

and ̃  I U,t = 1 in 618. 
loser portfolio, the beta reaches far higher levels (as high

as 4 or 5). The widening beta differences between winners

and losers, coupled with the facts from Table 2 that these

crash periods are characterized by sudden and dramatic

market upswings, mean that the WML strategy experiences

huge losses during these times. We examine these patterns

more formally by investigating how the mean return of the

momentum portfolio is linked to time variation in market

beta. 

3.1. Hedging market risk in the momentum portfolio 

Grundy and Martin (2001) explore this same question,

arguing that the poor performance of the momentum port-

folio in the pre-WWII period first shown by Jegadeesh and

Titman (1993) is a result of time-varying market and size

exposure. They argue that a hedged momentum portfolio,

for which conditional market and size exposure is zero,

has a high average return and a high Sharpe ratio in the

pre-WWII period when the unhedged momentum portfo-

lio suffers. 

At the time that Grundy and Martin (2001) under-

took their study, daily stock return data were not available

through CRSP in the pre-1962 period. Given the dynamic

nature of momentum’s risk exposures, estimating the fu-

ture hedge coefficients ex ante with monthly data is prob-

lematic. As a result, Grundy and Martin (2001) construct

their hedge portfolio based on a regression with monthly

returns over the current month and the future five months.

That is, the hedge portfolio was not an ex-ante imple-

mentable portfolio. 

However, to the extent that the future momentum-

portfolio beta is correlated with the future return of the

market, this procedure results in a biased estimate of the

returns of the hedged portfolio. We show there is in fact

a strong correlation of this type, which results in a large
upward bias in the estimated performance of the hedged

portfolio. 5 

3.2. Option-like behavior of the WML portfolio 

The source of the bias using the ex post beta of the mo-

mentum portfolio to construct the hedge portfolio is that,

in bear markets, the market beta of the WML portfolio is

strongly negatively correlated with the contemporaneous

realized market return. This means that a hedge portfo-

lio constructed using the ex post beta will have a higher

beta in anticipation of a higher future market return, mak-

ing its performance much better that what would be pos-

sible with a hedge portfolio based on the ex ante beta. 

In this subsection, we also show that the return of the

momentum portfolio, net of properly estimated (i.e., ex

ante) market risk, is significantly lower in bear markets.

Both of these results are linked to the fact that, in bear

markets, the momentum strategy behaves as if it is effec-

tively short a call option on the market. 

We first illustrate these issues with a set of four

monthly time series regressions, the results of which are

presented in Table 3 . The dependent variable in all regres-

sions is ˜ R WML ,t , the WML return in month t . The indepen-

dent variables are combinations of 

1. ˜ R e m,t , the CRSP value-weighted index excess return in

month t . 

2. I B,t−1 , an ex ante bear market indicator that equals one

if the cumulative CRSP VW index return in the past 24

months is negative and is zero otherwise; 

3. ˜ I U,t , a contemporaneous, i.e., not ex ante, up-market in-

dicator variable that is one if the excess CRSP VW index

return is greater than the risk-free rate in month t (e.g.,

R e m,t > 0 ), and is zero otherwise. 6 

Regression 1 in Table 3 fits an unconditional market

model to the WML portfolio: 

˜ R WML ,t = α0 + β0 ̃
 R m,t + ˜ εt . (1)

Consistent with the results in the literature, the estimated

market beta is negative, −0.576, and the intercept, ˆ α, is

both economically large (1.852% per month) and statisti-

cally significant ( t -statistic = 7.3). 

Regression 2 in Table 3 fits a conditional CAPM with the

bear market indicator, I B , as an instrument: 

˜ R WML ,t = (α0 + αB I B,t−1 ) + (β0 + βB I B,t−1 ) ̃  R m,t + ˜ εt . (2)

This specification is an attempt to capture both expected

return and market-beta differences in bear markets. Con-

sistent with Grundy and Martin (2001) , a striking change
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Fig. 3. Market betas of winner and loser decile portfolios. These three plots present the estimated market betas over three independent subsamples 

spanning our full sample: 1927:06 to 1939:12, 1940:01 to 1999:12, and 20 0 0:01 to 2013:03. The betas are estimated by running a set of 126-day rolling 

regressions of the momentum portfolio excess returns on the contemporaneous excess market return and ten (daily) lags of the market return and summing 

the betas. 
is evident in the market beta of the WML portfolio in bear 

markets. It is −1.131 lower, with a t -statistic of −13 . 4 on 

the difference. The WML alpha in bear market is 2.04% per 

month lower ( t -statistic = −3 . 4 ). Interestingly, the point es- 

timate for the alpha in bear markets (equal to ˆ α0 + ˆ αB ) is 

just below zero, but not statistically significant. 

Regression 3 introduces an additional element to the 

regression that allows us to assess the extent to which 

the up- and down-market betas of the WML portfolio 

differ: 
˜ R WML ,t = (α0 + αB · I B,t−1 ) 

+ (β0 + I B,t−1 (βB + ̃

 I U,t βB,U )) ̃  R m,t + ˜ εt . (3) 

This specification is similar to that used by Henriksson and 

Merton (1981) to assess market timing ability of fund man- 

agers. Here, the ˆ βB,U of −0.815 ( t -statistic = −4 . 5 ) shows 

that the WML portfolio does very badly when the mar- 

ket rebounds following a bear market. When in a bear 

market, the point estimates of the WML beta are −0.742 

( = 

ˆ β + 

ˆ β ) when the contemporaneous market return is 
0 B 
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Table 3 

Market timing regression results. 

This table presents the results of estimating four specifications of a 

monthly time-series regressions run over the period 1927:01 to 2013:03. 

In all cases the dependent variable is the return on the WML portfolio. 

The independent variables are a constant; an indicator for bear markets, 

I B,t−1 , which equals one if the cumulative past two-year return on the 

market is negative; the excess market return, R e m,t ; and a contempora- 

neous up-market indicator, I U, t , which equals one if R e m,t > 0 . The coef- 

ficients ˆ α0 and ˆ αB are multiplied by 100 (i.e., are in percent per month). 

Coefficient Variable Estimated coefficients (t-statistics) 

(1) (2) (3) (4) 

ˆ α0 1 1.852 1.976 1.976 2.030 

(7.3) (7.7) (7.8) (8.4) 

ˆ αB I B,t−1 −2.040 0.583 

( −3.4) (0.7) 
ˆ β0 

˜ R e m,t −0.576 −0.032 −0.032 −0.034 

( −12.5) ( −0.5) ( −0.6) ( −0.6) 
ˆ βB I B,t−1 · ˜ R e m,t −1.131 −0.661 −0.708 

( −13.4) ( −5.0) ( −6.1) 
ˆ βB,U I B,t−1 ·I U,t · ˜ R e m,t −0.815 −0.727 

( −4.5) ( −5.6) 

R 2 
adj 

0.130 0.269 0.283 0.283 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 The calculation of cumulative returns for long-short portfolios is de- 

scribed in Appendix A.1 . 
negative and = 

ˆ β0 + 

ˆ βB + 

ˆ βB,U = −1 . 796 when the market

return is positive. In other words, the momentum portfolio

is effectively short a call option on the market 

The predominant source of this optionality comes from

the loser portfolio. Panel A of Table 4 presents the esti-

mation of the regression specification in (3) for each of

the ten momentum portfolios. The final row of the ta-

ble (the ˆ βB,U coefficient) shows the strong up-market be-

tas for the loser portfolios in bear markets. For the loser

decile, the down-market beta is 1.560 ( = 1 . 338 + 0 . 222 )

and the point estimate of the up-market beta is 2.160

( = 1 . 560 + 0 . 600 ). In contrast, the up-market beta incre-

ment for the winner decile is slightly negative ( = −0 . 215 ).

This pattern also holds for less extreme winners and losers,

such as Decile 2 versus Decile 9 or Decile 3 versus Decile

8, with the differences between winners and losers de-

clining monotonically for less extreme past return-sorted

portfolios. The net effect is that a momentum portfolio

which is long winners and short losers will have signifi-

cant negative market exposure following bear markets pre-

cisely when the market swings upward and that exposure

is even more negative for more extreme past return-sorted

portfolios. 

3.3. Asymmetry in the optionality 

The optionality associated with the loser portfo-

lios is significant only in bear markets. Panel B of

Table 4 presents the same set of regressions using the bull

market indicator I L,t−1 instead of the bear-market indica-

tor I B,t−1 . The key variables here are the estimated coef-

ficients and t -statistics on βL, U , presented in the last two

rows of Panel B. Unlike in Panel A, no significant asym-

metry is present in the loser portfolio, though the winner

portfolio asymmetry is comparable to Panel A. The net ef-

fect is that the WML portfolio shows no statistically signif-

icant optionality in bull markets, unlike in bear markets. 
3.4. Ex ante versus ex post hedge of market risk for WML 

The results of the preceding analysis suggest that cal-

culating hedge ratios based on future realized betas, as in

Grundy and Martin (2001) , is likely to produce strongly

upward biased estimates of the performance of the hedged

portfolio. This is because the realized market beta of the

momentum portfolio is more negative when the realized

return of the market is positive. Thus, hedging ex post,

when the hedge is based on the future realized portfolio

beta, takes more market exposure (as a hedge) when the

future market return is high, leading to a strong upward

bias in the estimated performance of the hedged portfolio.

As an illustration of the magnitude of the bias, Fig. 4

plots the cumulative log return to the unhedged, ex post

hedged, and ex ante hedged WML momentum portfolio. 7

The ex post hedged portfolio takes the WML portfolio and

hedges out market risk using an ex post estimate of mar-

ket beta. Following Grundy and Martin (2001) , we con-

struct the ex post hedged portfolio based on WML’s future

42-day (two-month) realized market beta, estimated using

daily data. Again, to calculate the beta we use ten daily

lags of the market return. The ex ante hedged portfolio es-

timates market betas using the lagged 42 days of returns

of the portfolio on the market, including ten daily lags. 

Panel A of Fig. 4 plots the cumulative log returns to all

three momentum portfolios over the June 1927 to Decem-

ber 1939 period, covering a few years before, during, and

after the biggest momentum crash. The ex post hedged

portfolio exhibits considerably improved performance over

the unhedged momentum portfolio as it is able to avoid

the crash. However, the ex ante hedged portfolio is not

only unable to avoid or mitigate the crash, but also under-

performs the unhedged portfolio over this period. Hence,

trying to hedge ex ante, as an investor would in reality,

would have made an investor worse off. The bias in using

ex post betas is substantial over this period. 

Panel B of Fig. 4 plots the cumulative log returns of

the three momentum portfolios over the full sample pe-

riod from 1927:01 to 2013:03. Again, the strong bias in

the ex post hedge is clear, as the ex ante hedged portfo-

lio performs no better than the unhedged WML portfolio

in the overall period and significantly worse than the ex

post hedged portfolio. 

3.5. Market stress and momentum returns 

A casual interpretation of the results presented in

Section 3.2 is that, in a bear market, the portfolio of past

losers behaves like a call option on the market and that

the value of this option is not adequately reflected in the

prices of these assets. This leads to a high expected return

on the losers in bear markets, and a low expected return

to the WML portfolio that shorts these past losers. Because

the value of an option on the market is increasing in the

market variance, this interpretation further suggests that

the expected return of the WML portfolio should be a de-

creasing function of the future variance of the market. 
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Table 4 

Momentum portfolio optionality. 

This table presents estimated coefficients (t-statistics) from regressions of the monthly excess returns of the momentum decile portfolios and the winner- 

minus-loser (WML) long-short portfolio on the Center for Research in Securities Prices (CRSP) value-weighted (VW) excess market returns, and a number 

of indicator variables. Panel A reports results for optionality in bear markets in which, for each of the momentum portfolios, the following regression is 

estimated: 

˜ R e i,t = [ α0 + αB I B,t−1 ] + [ β0 + I B,t−1 (βB + ̃

 I U,t βB,U )] ̃ R e m,t + ̃  εt , 

where R e m is the CRSP VW excess market return, I B,t−1 is an ex ante bear market indicator that equals one if the cumulative CRSP VW index return in the 

past 24 months is negative and is zero otherwise. I U, t is a contemporaneous up-market indicator that equals one if the excess CRSP VW index return is 

positive in month t , and is zero otherwise. Panel B reports results for optionality in bull markets where for each of the momentum portfolios, the following 

regression is estimated: 

˜ R e i,t = [ α0 + αL I L,t−1 ] + [ β0 + I L,t−1 (βL + ̃

 I U,t βL,U )] ̃ R m,t + ̃  εt 

where I L,t−1 is an ex ante bull market indicator (defined as 1 − I B,t−1 ). The sample period is 1927:01-2013:03. The coefficients ˆ α0 , ˆ αB and ˆ αL are multiplied 

by 100 (i.e., are in percent per month). 

Coefficient Momentum decile portfolio 

1 2 3 4 5 6 7 8 9 10 WML 

Panel A: Optionality in bear markets 

ˆ α0 −1.406 −0.804 −0.509 −0.200 −0.054 −0.050 0.159 0.260 0.294 0.570 1.976 

( −7.3) ( −5.7) ( −4.9) ( −2.4) ( −0.7) ( −0.9) (2.7) (4.1) (3.8) (4.6) (7.8) 

ˆ αB −0.261 0.370 −0.192 −0.583 −0.317 −0.231 −0.001 −0.039 0.420 0.321 0.583 

( −0.4) (0.8) ( −0.6) ( −2.1) ( −1.3) ( −1.2) ( −0.0) ( −0.2) (1.7) (0.8) (0.7) 
ˆ β0 1.338 1.152 1.014 0.955 0.922 0.952 0.974 1.018 1.114 1.306 −0.032 

(30.4) (35.7) (42.6) (49.5) (55.6) (72.1) (72.3) (69.9) (62.7) (46.1) ( −0.6) 
ˆ βB 0.222 0.326 0.354 0.156 0.180 0.081 0.028 −0.126 −0.158 −0.439 −0.661 

(2.2) (4.4) (6.5) (3.5) (4.7) (2.7) (0.9) ( −3.8) ( −3.9) ( −6.8) ( −5.0) 
ˆ βB,U 0.600 0.349 0.180 0.351 0.163 0.121 −0.013 −0.031 −0.183 −0.215 −0.815 

(4.4) (3.5) (2.4) (5.9) (3.2) (3.0) ( −0.3) ( −0.7) ( −3.3) ( −2.5) ( −4.5) 

Panel B: Optionality in bull markets 

ˆ α0 0.041 0.392 −0.249 0.222 0.089 0.048 0.097 0.079 0.188 0.388 0.347 

(0.1) (1.4) ( −1.2) (1.3) (0.6) (0.4) (0.8) (0.6) (1.2) (1.5) (0.7) 

ˆ αL −1.436 −1.135 −0.286 −0.653 −0.303 −0.084 −0.164 0.164 0.239 0.593 2.029 

( −2.9) ( −3.1) ( −1.1) ( −2.9) ( −1.6) ( −0.6) ( −1.1) (1.0) (1.2) (1.9) (3.1) 
ˆ β0 1.890 1.664 1.459 1.304 1.188 1.097 0.992 0.877 0.860 0.754 −1.136 

(41.3) (49.6) (59.2) (64.5) (69.3) (80.5) (72.2) (58.7) (46.7) (25.9) ( −18.7) 
ˆ βL −0.545 −0.498 −0.451 −0.411 −0.308 −0.141 −0.078 0.133 0.285 0.670 1.215 

( −6.0) ( −7.4) ( −9.2) ( −10.2) ( −9.0) ( −5.2) ( −2.9) (4.5) (7.8) (11.5) (10.0) 
ˆ βL,U −0.010 −0.025 0.017 0.138 0.094 −0.006 0.136 0.021 −0.077 −0.251 −0.242 

( −0.1) ( −0.2) (0.2) (2.2) (1.8) ( −0.1) (3.2) (0.4) ( −1.4) ( −2.8) ( −1.3) 
To examine this hypothesis, we use daily market return 

data to construct an ex ante estimate of the market volatil- 

ity over the coming month, and we use this market vari- 

ance estimate in combination with the bear market indi- 

cator, I B, t-1 , to forecast future WML returns. We run the 

regression 

˜ R WML ,t = γ0 + γB , t −1 · I B , t −1 + γσ 2 
m 

· ˆ σ 2 
m,t−1 

+ γint · I B · ˆ σ 2 
m,t−1 + ˜ εt , (4) 

where I B is the bear market indicator and ˆ σ 2 
m,t−1 is the 

variance of the daily returns of the market over the 126 

days prior to time t . 

Table 5 reports the regression results, showing that 

both estimated market variance and the bear market 

indicator independently forecast future momentum re- 

turns. Columns 1 and 2 report regression results for 

each variable separately, and column 3 reports results us- 

ing both variables simultaneously. The results are con- 

sistent with those from Section 3.4 . That is, in peri- 

ods of high market stress, as indicated by bear mar- 

kets and high volatility, future momentum returns are 

low. Finally, the last two columns of Table 5 report re- 
sults for the interaction between the bear market indica- 

tor and volatility, in which momentum returns are shown 

to be particularly poor during bear markets with high 

volatility. 

3.6. Exposure to other risk factors 

Our results show that time-varying exposure to mar- 

ket risk cannot explain the low returns of the momen- 

tum portfolio in crash states. However, the option-like be- 

havior of the momentum portfolio raises the intriguing 

question of whether the premium associated with momen- 

tum could be related to exposure to variance risk because, 

in panic states, a long-short momentum portfolio behaves 

like a short (written) call option on the market and be- 

cause shorting options (i.e., selling variance) has histori- 

cally earned a large premium ( Carr and Wu, 2009; Chris- 

tensen and Prabhala, 1998 ). 

To assess the dynamic exposure of the momentum 

strategy to variance innovations, we regress daily WML re- 

turns on the inferred daily (excess) returns of a variance 

swap on the S&P 500, which we calculate using the VIX 

and S&P 500 returns. Section A.2 of Appendix A provides 
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Fig. 4. Ex ante versus ex post hedged portfolio performance. These plots show the cumulative returns to the baseline static winner-minus-loser (WML) 

strategy, the WML strategy hedged ex post with respect to the market, and the WML strategy hedged ex ante with respect to the market. The ex post 

hedged portfolio conditionally hedges the market exposure using the procedure of Grundy and Martin (2001) , but using the future 42-day (two-month) 

realized market beta of the WML portfolio using Eq. (4) . The ex ante hedged momentum portfolio estimates market betas using the lagged 42 days of 

returns on the portfolio and the market from Eq. (4) . Panel A covers the 1927:06–1939:12 time period. Panel B plots the cumulative returns over the full 

sample (1927:06–2013:03). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

details of the swap return calculation. We run a time-series

regression with a conditioning variable designed to cap-

ture the time variation in factor loadings on the market

and, potentially, on other variables. The conditioning vari-

able I B σ 2 ≡ (1 / ̄v B )I B,t−1 ̂  σ 2 
m,t−1 

is the interaction used earlier

but with a slight twist. That is 

• I B, t-1 is the bear market indicator defined earlier

( I B , t −1 = 1 if the cumulative past two-year market re-

turn is negative and is zero otherwise); 

• ˆ σ 2 
m,t−1 

is the variance of the market excess return over

the preceding 126 days; and 
• (1 / ̄v B ) is the inverse of the full-sample mean of ˆ σ 2 
m,t−1

over all months in which I B,t−1 = 1 . 

Normalizing the interaction term with the constant

1 / ̄v B does not affect the statistical significance of the re-

sults, but it gives the coefficients a simple interpretation.

Because ∑ 

I B,t−1 =1 

I Bσ 2 = 1 , (5)

the coefficients on I Bσ 2 and on variables interacted with

I 2 can be interpreted as the weighted average change
Bσ
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Table 5 

Momentum returns and estimated market variance. 

This table presents the estimated coefficients ( t -statistics) for a set of 

time series regression based on the following regression specification: 

˜ R WML ,t = γ0 + γB · I B,t−1 + γσ 2 
m 

· ˆ σ 2 
m,t−1 + γint · I B , t −1 · ˆ σ 2 

m,t−1 + ̃  εt , 

where I B,t−1 is the bear market indicator and ˆ σ 2 
m,t−1 is the variance of the 

daily returns on the market, measured over the 126 days preceding the 

start of month t . Each regression is estimated using monthly data over 

the period 1927:07–2013:03. The coefficients ˆ γ0 and ˆ γB are multiplied by 

one hundred (i.e., are in percent per month). 

Coefficient Regression 

(1) (2) (3) (4) (5) 

ˆ γ0 1.955 2.428 2.500 1.973 2.129 

(6.6) (7.5) (7.7) (7.1) (5.8) 

ˆ γB −2.626 −1.281 0.023 

( −3.8) ( −1.6) (0.0) 

ˆ γσ 2 
m 

−0.330 −0.275 −0.088 

( −5.1) ( −3.8) ( −0.8) 

ˆ γint −0.397 −0.323 

( −5.7) ( −2.2) 

Table 6 

Regression of winner-minus-loser (WML) portfolio returns on variance 

swap returns. 

This table presents the estimated coefficients (t-statistics) from three 

daily time-series regressions of the zero-investment WML portfolio re- 

turns on sets of independent variables including a constant term and the 

normalized ex ante forecasting variable I Bσ 2 , and on this forecasting vari- 

able interacted with the excess market return ( ̃ r e m,t ) and the return on a 

(zero-investment) variance swap on the Standard & Poors 500 ( ̃ r e v s,t ). (See 

Subsection A.2 of Appendix A for details on how these swap returns are 

calculated.) The sample period is January 2, 1990 to March 28, 2013. t- 

statistics are in parentheses. The intercepts and the coefficients for I Bσ 2 

are converted to annualized, percentage terms by multiplying by 25,200 

( = 252 × 100 .) 

Independent variable Regression 

(1) (2) (3) 

α 31.48 29.93 30.29 

(4.7) (4.8) (4.9) 

I Bσ 2 −58.62 −49.16 −54.83 

( −5.2) ( −4.7) ( −5.3) 

˜ r e m,t 0.11 0.10 

(4.5) (3.1) 

I Bσ 2 · ˜ r e m,t −0.52 −0.63 

( −28.4) ( −24.7) 

˜ r v s,t −0.02 

( −0.4) 

I Bσ 2 · ˜ r v s,t −0.10 

( −4.7) 

 

8 Although beyond the scope of this paper, we also examine HML and 

SMB as the dependent variable in similar regressions. We find that HML 

has opposite signed market exposure in panic states relative to WML, 

which is not surprising because value strategies buy long-term losers and 

sell winners, the opposite of what a momentum strategy does. The corre- 

lation between WML and HML is −0 . 50 . However, an equal combination 

of HML and WML does not completely hedge the panic state optionality 

as the effects on WML are quantitatively stronger. The details are pro- 

vided in Appendix B . 
in the corresponding coefficient during a bear market, in 

which the weight on each observation is proportional to 

the ex ante market variance leading up to that month. 

Table 6 presents the results of this analysis. In regres- 

sion 1 the intercept ( α) estimates the mean return of the 

WML portfolio when I B,t−1 = 0 as 31.48% per year. How- 

ever, the coefficient on I Bσ 2 shows that the weighted- 

average return in panic periods (volatile bear markets) is 

almost 59% per year lower 

Regression 2 controls for the market return and condi- 

tional market risk. Consistent with our earlier results, the 

last coefficient in this column shows that the estimated 

WML beta falls by 0.518 ( t -statistic = −28 . 4 ) in panic states. 
However, both the mean WML return in calm periods and 

the change in the WML premium in the panic periods 

(given, respectively, by α and the coefficient on I Bσ 2 ), re- 

main about the same. 

In regression 3, we add the return on the variance swap 

and its interaction with I Bσ 2 . The coefficient on ˜ r v s,t shows 

that outside of panic states (i.e., when I B,t−1 = 0 ), the WML 

return does not co-vary significantly with the variance 

swap return. However, the coefficient on I Bσ 2 · ˜ r v s,t shows 

that in panic states, WML has a strongly significant nega- 

tive loading on the variance swap return. That is, WML is 

effectively short volatility during these periods. This is con- 

sistent with our previous results, in which WML behaves 

like a short call option, but only in panic periods. Outside 

of these periods, there is no evidence of any optionality. 

However, the intercept and estimated I Bσ 2 coefficient in 

regression 3 are essentially unchanged, even after control- 

ling for the variance swap return. The estimated WML pre- 

mium in non-panic states remains large, and the change in 

this premium in panic states (i.e., the coefficient on I Bσ 2 ) 

is just as negative as before, indicating that although mo- 

mentum returns are related to variance risk, neither the 

unconditional nor the conditional returns to momentum 

are explained by it. 

We also regress the WML momentum portfolio returns 

on the three Fama and French (1993) factors consisting of 

the CRSP VW index return in excess of the risk-free rate, a 

small minus big (SMB) stock factor, and a high book eq- 

uity to market equity (BE/ME) minus low BE/ME (HML) 

factor, all obtained from Ken French’s website. In addition, 

we interact each of the factors with the panic state vari- 

able I Bσ 2 . The results are reported in Appendix B , in which

the abnormal performance of momentum continues to be 

significantly more negative in bear market states, whether 

we measure abnormal performance relative to the mar- 

ket model or to the Fama and French (1993) three-factor 

model, with little difference in the point estimates. 8 

4. Dynamic weighting of the momentum portfolio 

Using the insights from Section 3 , we evaluate the per- 

formance of a strategy that dynamically adjusts the weight 

on the WML momentum strategy using the forecasted re- 

turn and variance of the strategy. We show that the dy- 

namic strategy generates a Sharpe ratio more than double 

that of the baseline $1 long/$1 short WML strategy and is 

not explained by other factors or other suggested dynamic 

momentum portfolios such as a constant volatility momen- 

tum strategy ( Barroso and Santa-Clara, 2015 ). Moreover, 

we employ an out-of-sample dynamic momentum strat- 

egy that is implementable in real time and show that this 

portfolio performs about as well as an in-sample version 
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whose parameters are estimated more precisely over the

full sample period. 

We begin with the design of the dynamic strategy. We

show in Appendix C that, for the objective function of

maximizing the in-sample unconditional Sharpe ratio, the

optimal weight on the risky asset (WML) at time t −1 is 

w 

∗
t−1 = 

(
1 

2 λ

)
μt−1 

σ 2 
t−1 

(6)

where μt−1 ≡ E t−1 [ R WML ,t ] is the conditional expected re-

turn on the (zero-investment) WML portfolio over the

coming month, σ 2 
t−1 ≡ E t−1 [(R 2 WML ,t − μt−1 ) 

2 ] is the condi-

tional variance of the WML portfolio return over the com-

ing month, and λ is a time-invariant scalar that controls

the unconditional risk and return of the dynamic portfolio.

This optimal weighting scheme comes from an intertem-

poral version of Markowitz (1952) portfolio optimization. 

We then use the insights from our previous analysis to

provide an estimate of μt−1 , the conditional mean return

of WML. The results from Table 5 provide an instrument

for the time t conditional expected return on the WML

portfolio. As a proxy for the expected return, we use the

fitted regression of the WML returns on the interaction be-

tween the bear market indicator I B,t−1 and the market vari-

ance over the preceding six months (i.e., the regression es-

timated in the fourth column of Table 5 ). 

To forecast the volatility of the WML series, we first fit

a the generalized autoregressive conditional heterostedas-

ticity (GARCH) model proposed by Glosten, Jagannathan,

and Runkle (1993) —the GJR-GARCH model—to the WML re-

turn series. The process is defined by 

R W ML,t = μ + εt , (7)

where εt ∼ N 

(
0 , σ 2 

t 

)
and where the evolution of σ 2 

t is gov-

erned by the process: 

σ 2 
t = ω + βσ 2 

t−1 + ( α + γ I(εt−1 < 0) ) ε2 
t−1 (8)

where I(εt−1 < 0) is an indicator variable equal to one if

εt−1 < 0 , and zero otherwise. 9 We use maximum likeli-

hood to estimate the parameter set ( μ, ω, α, γ , β) over

the full time series (estimates of the parameters and stan-

dard errors are provided in Appendix D ). 

We form a linear combination of the forecast of future

volatility from the fitted GJR-GARCH process with the re-

alized standard deviation of the 126 daily returns preced-

ing the current month. We show in Appendix D that both

components contribute to forecasting future daily realized

WML volatility. 

Our analysis in this section is also related to work by

Barroso and Santa-Clara (2015) , who argue that momen-

tum crashes can be avoided with a momentum portfo-

lio that is scaled by its trailing volatility. They further

show that the unconditional Sharpe ratio of the constant-

volatility momentum strategy is far better than a simple

$1-long/$1-short strategy. 
9 Engle and Ng (1993) investigate the performance of a number of para- 

metric models in explaining daily market volatility for Japan. They find 

that the GJR model that we use here best fits the dynamic structure of 

volatility for that market. 

 

 

 

 

 

 

Eq. (6) shows that our results would be approximately

the same as those of Barroso and Santa-Clara (2015) if the

Sharpe ratio of the momentum strategy were time invari-

ant, i.e., if the forecast mean were always proportional to

the forecast volatility. Eq. (6) shows that, in this setting,

the weight on WML would be inversely proportional to

the forecast WML volatility – that is the optimal dynamic

strategy would be a constant volatility strategy like the one

proposed by Barroso and Santa-Clara (2015) . 

However, this is not the case for momentum. In fact,

the return of WML is negatively related to the forecast

WML return volatility, related in part to our findings of

lower momentum returns following periods of market

stress. This means that the Sharpe ratio of the optimal

dynamic portfolio varies over time and is lowest when

WML’s volatility is forecast to be high (and its mean re-

turn low). To test this hypothesis, in Section 4.1 we imple-

ment a dynamic momentum portfolio using these insights

and show that the dynamic strategy outperforms a con-

stant volatility strategy. 

To better illustrate this, Fig. 5 plots the weight on the

($1-long/$1-short) WML portfolio for the three strategies:

the baseline WML strategy, the constant-volatility strategy

(cvol), and the dynamic strategy (dyn) with a WML weight

given by Eq. (6) . Here, we scale the weights of both the

constant volatility and the dynamic strategy so as to make

the full sample volatility of each return series equal to that

of the baseline WML strategy. Also, in the legend we indi-

cate the average weight on WML for each strategy and the

time series standard deviation of the WML weight by strat-

egy. 

By definition, the baseline dollar long-dollar short WML

strategy has a constant weight of 1. In contrast, the con-

stant volatility strategy WML-weight varies more, reaching

a maximum of 2.18 in November 1952 and a minimum

of 0.53 in June 2009. The full dynamic strategy weights

are 3.6 times more volatile than the constant volatility

weights, reaching a maximum of 5.37 (also in November

1952) and a minimum of -0.604 in March 1938. Unlike the

constant volatility strategy, for which the weight cannot go

below zero, the dynamic strategy weight is negative in 82

of the months in our sample, necessarily in months when

the forecast return of the WML strategy is negative. 

This result indicates that the dynamic strategy, at times,

employs considerably more leverage than the constant

volatility strategy. In addition, an actual implementation of

the dynamic strategy would certainly incur higher trans-

action costs than the other two strategies. These factors

should certainly be taken into account in assessing practi-

cal implications of the strong performance of the strategy. 

4.1. Dynamic strategy performance 

Panel A of Fig. 6 plots the cumulative returns to the

dynamic strategy from July 1927 to March 2013, in which

λ is chosen so that the in-sample annualized volatility

of the strategy is 19%, the same as that of the CRSP

value-weighted index over the full sample. For compari-

son, we also plot the cumulative log returns of the static

WML strategy and the constant volatility strategy, both

also scaled to 19% annual volatility. As Fig. 6 shows, the
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Fig. 5. Dynamic strategy weights on winner-minus-loser (WML) portfolio. We plot the weight on the WML portfolio as a function of time for in static WML 

portfolio, the constant volatility strategy (cvol), and the dynmaic strategy (dyn). The figure legend reports the time series mean and standard deviation for 

the WML weight for each portfolio. 
dynamic portfolio outperforms the constant volatility port- 

folio, which, in turn, outperforms the basic WML portfolio. 

The Sharpe ratio (in parentheses on the figure legend) of 

the dynamic portfolio is nearly twice that of the static 

WML portfolio and a bit higher than the constant volatility 

momentum portfolio. In section 4.4 , we conduct formal 

spanning tests among these portfolios as well as other fac- 

tors. Consistent with our previous results, part of the out- 

performance of the dynamic strategy comes from its ability 

to mitigate momentum crashes. However, the dynamic 

strategy outperforms the other momentum strategies even 

outside of the 1930s and the financial crisis period. 

4.2. Subsample performance 

As a check on the robustness of our results, we perform 

the same analysis over a set of approximately quarter- 

century subsamples: 1927 to 1949, 1950 to 1974, 1975 to 

1999, and 20 0 0 to 2013. We use the same mean and vari- 

ance forecasting equation and the same calibration in each 

of the four subsamples. Panels B–E of Fig. 6 plot the cu- 

mulative log returns by subsample and present the strat- 

egy Sharpe ratios (in parentheses) by subsample. For ease 

of comparison, returns for each of the strategies are scaled 

to an annualized volatility of 19% in each subsample. 

In each of the four subsamples,the ordering of perfor- 

mance remains the same. The dynamic strategy outper- 
forms the constant volatility strategy, which outperforms 

the static WML strategy. As the subsample plots show, part 

of the improved performance of the constant volatility, and 

especially dynamic strategy, over the static WML portfolio 

is the amelioration of big crashes. But, even over subperi- 

ods devoid of those crashes, there is still improvement. 

4.3. Out-of-sample performance 

One important potential concern with the dynamic 

strategy performance results presented above is that the 

trading strategy relies on parameters estimated over the 

full sample. This is a particular concern here, as our dy- 

namic strategy relies on the conditional expected WML- 

return estimate from the fitted regression in column 4 of 

Table 5 . 

To shed some light on whether the dynamic strategy re- 

turns could have been achieved by an actual investor who 

would not have known these parameters, we construct an 

out-of-sample strategy. We continue to use Eq. (6) to de- 

termine the weight on the WML portfolio, and we continue 

to use the fitted regression specification in Column 4 of 

Table 5 for the forecast mean, that is, 

μt−1 ≡ E t−1 [ ̃  R WML ,t ] = ˆ γ0 ,t−1 + ˆ γint ,t −1 · I B , t −1 · ˆ σ 2 
m,t−1 , (9) 

only now the ˆ γ0 ,t−1 and ˆ γint ,t −1 in our forecasting speci- 

fication are the estimated regression coefficients not over 
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Fig. 6. Dynamic momentum strategy performance. These plots show the cumulative returns to the dynamic strategy, (dyn), from Eqn. (6) , in which λ

is chosen so that the in-sample annualized volatility of the strategy is 19%, the same as that of the Center for Research in Security Prices (CRSP) value- 

weighted index over the full sample. For comparison, we also plot the cumulative log returns of the static winner-minus-lower (WML) strategy and a 

constant volatility strategy (cvol), similar to that of Barroso and Santa-Clara (2015) , also scaled to an annualized volatility of 19%. Panel A plots the cumu- 

lative returns over the full sample period from 1927:07 to 2013:03. Panels B–E plot the returns over four roughly quarter-century subsamples: 1927–1949, 

1950–1974, 1975–1999, and 20 0 0–2013. The annualized Sharpe ratios of each strategy in each period are reported in parentheses in the corresponding 

legend. 
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Fig. 7. Mean forecast coefficients: expanding window. We use the fitted regression specification in column 4 of Table 5 for the forecast mean; that is 

μt−1 ≡ E t−1 [ ̃ R WML ,t ] = ˆ γ0 ,t−1 + ̂  γint ,t −1 · I B , t −1 · ˆ σ 2 
m,t−1 , only now the ˆ γ0 ,t−1 and ˆ γint ,t −1 are the estimated regression coefficients not over the full sample, but 

rather from a regression run from the start of our sample (1927:07) up through month t−1 (as indicated by the t−1 subscripts on these coefficients). 

Table 7 

Strategy performance comparison. 

This table presents the annualized Sharpe ratios of five zero-investment 

portfolio strategies, based on the monthly returns of these strategies over 

the 1934:01–2013:03 time period. WML is the baseline winner-minus- 

loser momentum strategy. cvol is the constant volatility strategy, in which 

the WML returns each month are scaled by the realized volatility of the 

daily WML returns over the preceding 126 trading days. For the variance 

scaled portfolio, the WML returns each month are scaled by the realized 

variance of the daily WML returns over the preceding 126 trading days. 

For the strategy labeled “dyn, out-of-sample,” the WML portfolio weights 

each month are multiplied each month by w ∗ in Eq. (6) , where μt−1 is 

the out-of-sample WML mean-return forecast (in Eq. 9) , and σ 2 
t−1 is the 

realized variance of the daily WML returns over the preceding 126 trad- 

ing days. The strategy labeled “dyn, in-sample” is the dynamic strategy 

discussed in Section 4.1 , with the parameters in the mean and variance 

forecast estimated over the full sample. The column labeled “Appraisal ra- 

tio” gives the annualized Treynor and Black (1973) appraisal ratio of the 

strategy in that row, relative to the strategy in the preceding row. 

Strategy Sharpe Appraisal 

ratio ratio 

WML 0.682 

cvol 1.041 0.786 

variance scaled 1.126 0.431 

dyn, out-of-sample 1.194 0.396 

dyn, in-sample 1.202 0.144 
the full sample, but rather from a regression run from the 

start of our sample (1927:07) up through month t −1 . 10 To 

estimate the month t WML variance we use the 126-day 

WML variance estimated through the last day of month 

t −1 . 

Fig. 7 plots the coefficients for this expanding window 

regression as a function of the date. The slope coefficient 

begins only in October 1930, because the bear market in- 

dicator ( I B ) is zero up until October 1930. 11 From January 

1933 until the end of our sample, the slope coefficient is 

always in the range of −0.43 to −0.21.The slope coefficient 

rises dramatically just before the poor performance of the 

momentum strategy in the 2001 and 2009 periods. These 

were bear markets (i.e., I B = 1 ) in which the market con- 

tinued to fall and momentum performed well. However, 

in each of these cases the forecasting variable eventually 

works in the sense that momentum does experience very 

bad performance and the slope coefficient falls. Following 

the fairly extreme 2009 momentum crash, the slope coef- 

ficient falls below −0.40 in August and September 2009. 

4.3.1. Out-of-sample strategy performance 

Table 7 presents a comparison of the performance of 

the various momentum strategies: the $1 long–$1 short 

static WML strategy, the constant volatility strategy, and 

strategy scaled by variance instead of standard deviation, 
10 We have added t − 1 subscripts to these coefficients to emphasize the 

fact that they are in the investor’s information set at the end of month 

t − 1 . 
11 Also, the intercept up to October 1930 is simply the mean monthly 

return on the momentum portfolio up to that time. After October 1930, it 

is the intercept coefficient for the regression. 
the dynamic out-of-sample strategy, and the dynamic in- 

sample strategy. Next to each strategy (except the first 

one), there are two numbers. The first number is the 

Sharpe ratio of that strategy over the period from Jan- 

uary 1934 up through the end of our sample (March 2013). 

The second number is the Treynor and Black (1973) ap- 

praisal ratio of that strategy relative to the preceding one 

in the list. So, for example going from WML to the constant 
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Table 8 

Spanning tests of the dynamic momentum portfolio. 

This table presents the results of spanning tests of the dynamic (Panel A) and constant volatility (Panel B) portfolios with respect to the market (Mkt), the 

Fama and French (1993; FF) small-minus-big (SMB), and high-minus-low (HML) factors, the static wiinner-minus-loser (WML) portfolio, and each other 

by running daily time-series regressions of the dynamic (dyn) portfolio’s and constant volatility (cvol) portfolio’s returns on these factors. In addition, 

we interact each of these factors with the market stress indicator I Bσ 2 to estimate conditional betas with respect to these factors, which are labeled 

“conditional.” For ease of comparison, the dyn and cvol portfolios are scaled to have the same annualized volatility as the static WML portfolio (23%). The 

reported intercepts or αs from these regressions are converted to annualized, percentage terms by multiplying by 252 times one hundred. 

Coefficient Factor Set 

1 2 3 4 5 6 

Panel A: Dependent variable = returns to dynamic (dyn) momentum portfolio 

Mkt+WML Mkt+WML FF+WML Mkt+cvol Mkt+cvol FF+cvol 

conditional conditional conditional conditional 

ˆ α 23.74 23.23 22.04 7.27 6.92 6.10 

t ( α) (11.99) (11.76) (11.60) (6.86) (6.44) (6.08) 

Panel B: Dependent variable = returns to constant volatility (cvol) momentum portfolio 

Mkt+WML Mkt+WML FF+WML Mkt+dyn Mkt+dyn FF+dyn 

conditional conditional conditional conditional 

ˆ α 14.27 14.28 13.88 −0.72 −0.15 −0.02 

t ( α) (11.44) (11.55) (11.28) ( −0.66) ( −0.13) ( −0.02) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 Because the optimal dynamic portfolio solved in Appendix C is not 

conditional on other factors, to form this portfolio in the presence of 

other factors we first regress the static momentum portfolio on the other 

factors using daily returns and then use the residuals to form our dy- 

namic strategy by forecasting the conditional mean and variance of those 

residuals to form the dynamic weights. 
volatility strategy increases the Sharpe ratio from 0.682 to

1.041. We know that to increase the Sharpe ratio by that

amount, the WML strategy is combined with an (orthog-

onal) strategy with a Sharpe ratio of 
√ 

1 . 041 2 − 0 . 682 2 =
0 . 786 , which is also the value of the Treynor and Black ap-

praisal ratio. 

The last two rows of Table 7 show that going from

in-sample to out-of-sample results in only a very small

decrease in performance for the dynamic strategy. Going

from the constant volatility strategy to the out-of-sample

dynamic strategy continues to result in a fairly substantial

performance increase equivalent to adding on an orthog-

onal strategy with a Sharpe ratio of 
√ 

1 . 194 2 − 1 . 041 2 =
0 . 585 . This performance increase can be decomposed into

two roughly equal parts: one part is the performance in-

crease that comes from scaling by variance instead of by

volatility, and the other second component comes from

forecasting the mean, which continues to result in a sub-

stantial performance gain (AR = 0.396) even though we are

doing a full out-of-sample forecast of the mean return and

variance of WML. 

4.4. Spanning tests 

A more formal test of the dynamic portfolio’s success

is to conduct spanning tests with respect to the other

momentum strategies and other factors. Using daily re-

turns, we regress the dynamic portfolio’s returns on a host

of factors that include the market and Fama and French

(1993) factors as well as the static WML and constant

volatility (cvol) momentum strategies. The annualized al-

phas from these regressions are reported in Table 8 . 

The first column of Panel A of Table 8 reports re-

sults from regressions of our dynamic momentum port-

folio on the market plus the static momentum portfolio,

WML. The intercept is highly significant at 23.74% per an-

num ( t -statistic = 11.99), indicating that the dynamic port-

folio’s returns are not captured by the market or the static
momentum portfolio. Because this regression controls only

for unconditional market exposure, the second column of

Panel A reports regression results that include interactions

of our panic state indicators with the market to capture

the conditional variability in beta. The alpha is virtually

unchanged and remains positive and highly significant. The

third column then adds the Fama and French (1993) factors

SMB and HML and their interactions with the panic state

variables to account for conditional variability in exposure

to the market, size, and value factors. This regression ac-

counts for whether our dynamic portfolio is merely rotat-

ing exposure to these factors. 12 Again, the alpha with re-

spect to this conditional model is strong and significant at

22% per year, nearly identical in magnitude to the first two

columns. Hence, our dynamic momentum strategy’s abnor-

mal performance is not being driven by dynamic exposure

to these other factors or to the static momentum portfolio.

Columns 4 through 6 of Panel A of Table 8 repeat the

regressions from Columns 1 through 3 by replacing the

static WML portfolio with the constant volatility (cvol)

momentum portfolio. The alphas drop in magnitude to

about 7% per year but remain highly statistically signifi-

cant ( t -statistic between 6 and 7), suggesting that the dy-

namic momentum portfolio is not spanned by the constant

volatility portfolio. 

Panel B of Table 8 flips the analysis around and exam-

ines whether the constant volatility portfolio is spanned by

the static WML portfolio or the dynamic portfolio. The first

three columns of Panel B indicate that the constant volatil-

ity portfolio is not spanned by the static WML portfolio or

the Fama and French (1993) factors, generating alphas of
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about 14% per annum with highly significant t -statistics. 

These results are consistent with Barroso and Santa-Clara 

(2015) . However, the alphas of the constant volatility port- 

folio are slightly smaller in magnitude than those from the 

dynamic strategy, consistent with the Sharpe ratio compar- 

isons from Fig. 6 . (Because we scale both the dynamic and 

constant volatility portfolios to have the same variance, 

these alphas are comparable and give the same rankings 

as information ratios would.) 

Columns 4 through 6 of Panel B report results from re- 

gressing the constant volatility portfolio’s returns on the 

dynamic portfolio’s returns. Here, the alphas are all zero, 

both economically and statistically, suggesting that the dy- 

namic portfolio spans the constant volatility portfolio. Ac- 

cording to Appendix C , this should be the case in the- 

ory, thus implying that we obtain decent ex ante forecasts 

of the conditional mean and variance of the static WML 

portfolio to form a dynamic strategy that reliably captures 

and improves upon the returns to a constant volatility and 

static momentum portfolio. 

5. International equities and other asset classes 

Price momentum was first shown in individual equi- 

ties in the US. However, subsequent research has demon- 

strated the existence of strong momentum effects both 

among common stocks in other investment regions and in 

other asset classes (see Asness, Moskowitz, and Pedersen 

(2013) for a summary). 

We investigate whether the same momentum crash 

patterns we observe in US equities are also present in 

these other asset markets and whether our dynamic mo- 

mentum portfolio helps ameliorate these crashes and im- 

proves momentum performance in other markets. 

5.1. Data 

The data come from Asness, Moskowitz, and Pedersen 

(2013) and for equities cover the US, UK, Japan, and Conti- 

nental Europe. Details on data description and sources can 

be found in Asness, Moskowitz, and Pedersen (2013) . The 

US and UK data begin in January 1972 and Europe and 

Japan in February 1974, extending to May 2013. 13 We also 

examine a global equity momentum strategy (GE), which 

weights each region’s equity momentum strategy by the ex 

post volatility of the portfolio over the full sample, follow- 

ing Asness, Moskowitz, and Pedersen (2013) . 

The non-equity data also come from Asness, Moskowitz, 

and Pedersen (2013) . They contain equity country index fu- 

tures across 18 developed equity markets beginning in Jan- 

uary 1978, ten currencies across developed markets start- 

ing in January 1979, ten country government bonds begin- 

ning January 1982, and 27 different commodity futures be- 

ginning in January 1972. All series end in May 2013. 
13 These data extend beyond the original sample period used in Asness, 

Moskowitz, and Pedersen (2013) , as the data are updated monthly follow- 

ing the same procedure for portfolio construction in Asness, Moskowitz, 

and Pedersen (2013) . The data are available from: https://www.aqr.com/ 

library/data-sets/value-and-momentum-everywhere-factors-monthly . 
In addition, we examine two composite portfolios: GA 

is a global momentum strategy across the non-equity asset 

classes, which weights each asset class momentum strat- 

egy portfolio by the ex post volatility of that portfolio. GAll 

is a global momentum strategy across all of the equity and 

non-equity asset classes, which weights the GE and GA 

portfolios by their ex post return volatilities over the full 

sample. 

The definition of the market index is different for each 

market and asset class. It is the MSCI local index for the 

US, UK, Europe, and Japan, the MSCI World index for coun- 

try index futures, an equal-weighted average of all country 

bonds for bond markets, an equal-weighted average of all 

currencies for currency markets, and the Goldman Sachs 

Commodity Index (GSCI) for commodities. 

5.2. Cross-sectional equity momentum outside the US 

The portfolio formation procedure here is similar to 

that used earlier in the paper, except that, instead of taking 

the top and bottom decile portfolios, we use the Asness, 

Moskowitz, and Pedersen (2013) P3–P1 momentum portfo- 

lios, which is long the top third and short the bottom third 

of securities ranked on returns from month t − 12 through 

month t − 2 . Both the long and the short side of the port-

folio are value weighted. As shown in Asness, Moskowitz, 

and Pedersen (2013) , over this time period there are strong 

momentum effects in each of the regions except Japan. 

Panels A through D of Table 9 present the results of 

the regressions run in Section 2 , but for the other stock 

market universes. Panel A shows the estimated coefficients 

and t -statistics from the regression specification in Eq. (2) . 

Consistent with the results presented earlier, the market 

betas of the momentum strategy are dramatically lower 

in bear markets across the other stock markets as well. 

The strategies implemented using European and Japanese 

stocks have market betas that are approximately 0.5 lower 

during bear markets (with t -statistics of about −7). The UK 

momentum strategy beta falls by 0.2. The drop in this pe- 

riod for the US momentum strategy is 0.58, comparable 

to the WML portfolio over the longer 1927–2013 period. 

Globally, averaging across the US, UK, Europe, and Japan, 

the market betas of the momentum strategy are markedly 

lower in bear markets. 

The abnormal returns of the momentum strategies are 

significantly positive in bull markets for all regions except 

Japan. Consistent with our analysis in Section 2 , the return 

is lower in bear markets in each region, although, using 

only the bear market indicator as a proxy for panic periods, 

none of the differences is statistically significant over these 

shorter sample periods. 

Panel B investigates the optionality in the momentum 

strategy in bear markets using the regression specification 

in Eq. (3) . Consistent with the longer period US results, 

there is statistically significant optionality in bear markets 

in the European, UK, and Japan stock markets and globally 

across all markets. For this subsample and methodology, 

the optionality is of the right sign, but it is not statis- 

tically significant for the US market. The negative beta 

of long-short momentum strategies is particularly acute 

when the contemporaneous market return is positive. That 

https://www.aqr.com/library/data-sets/value-and-momentum-everywhere-factors-monthly
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Table 9 

Time series regressions for international equity markets. 

The table reports the estimated coefficients and t -statistics from re- 

gressions of the monthly returns to a zero-investment equity momentum 

strategy in each region on the indicated set of independent variables. The 

estimated regression intercept ( α) and the coefficients on I B and I Bσ 2 are 

all multiplied by 1,200 to put them in annualized, percentage terms. GE 

is a global equity momentum strategy that is a volatility-weighted port- 

folio of the four equity markets. The starting month of each return series 

is indicated in the table header; all series end in 2013:05. EU = European 

Union; JP = Japan; UK = United Kingdom. 

Variable Region, time period start 

EU, JP, UK, US, GE, 

1974:02 1974:02 1972:01 1972:01 1972:01 

Panel A: Alpha and beta in bear markets 

α 8.935 1.887 7.409 5.181 5.826 

(3.5) (0.5) (2.7) (1.9) (3.6) 

I B −3.549 −0.837 −6.827 −2.921 −4.920 

( −0.7) ( −0.1) ( −1.1) ( −0.5) ( −1.2) 

R e m 0.071 0.246 0.015 0.150 0.023 

(1.6) (4.8) (0.4) (2.7) (0.7) 

I B R 
e 
m −0.508 −0.527 −0.197 −0.584 −0.275 

( −7.1) ( −7.0) ( −3.1) ( −6.2) ( −4.6) 

Panel B: Optionality in bear markets 

α 8.935 1.887 7.409 5.181 5.826 

(3.6) (0.5) (2.7) (1.9) (3.6) 

I B 9.418 11.104 4.249 −0.266 5.019 

(1.2) (1.3) (0.5) ( −0.0) (0.8) 

R e m 0.071 0.246 0.015 0.150 0.023 

(1.7) (4.8) (0.4) (2.7) (0.7) 

I B R 
e 
m −0.302 −0.318 0.004 −0.540 −0.098 

( −2.7) ( −2.5) (0.0) ( −3.3) ( −1.0) 

I B I U R 
e 
m −0.418 −0.367 −0.306 −0.086 −0.342 

( −2.4) ( −2.0) ( −2.2) ( −0.3) ( −2.2) 

Panel C: Market-variance effects 

α 12.237 12.385 10.856 10.331 8.345 

(4.1) (2.5) (3.6) (3.4) (4.8) 

I B 1.445 4.554 0.213 6.018 2.254 

(0.3) (0.7) (0.0) (0.9) (0.5) 

ˆ σ 2 
m −0.113 −0.221 −0.078 −0.204 −0.252 

( −2.0) ( −2.9) ( −2.6) ( −3.3) ( −3.7) 

R e m 0.115 0.280 0.020 0.215 0.041 

(2.5) (4.2) (0.5) (3.6) (1.2) 

I B R 
e 
m −0.391 −0.512 −0.182 −0.485 −0.206 

( −4.8) ( −6.5) ( −2.5) ( −4.8) ( −3.2) 

ˆ σ 2 
m R 

e 
m −1.755 −0.734 −0.040 −2.361 −1.959 

( −2.6) ( −0.7) ( −0.2) ( −2.5) ( −2.2) 

Panel D: Bear-market—market-variance interaction effects 

α 10.286 5.333 8.627 7.084 6.720 

(4.4) (1.6) (3.4) (2.8) (4.5) 

I Bσ 2 −6.509 −9.910 −11.408 −11.055 −8.704 

( −2.0) ( −2.2) ( −3.2) ( −2.6) ( −3.6) 

I B R 
e 
m −0.306 −0.180 −0.176 −0.245 −0.177 

( −3.7) ( −1.8) ( −2.6) ( −2.4) ( −2.8) 

ˆ σ 2 
m R 

e 
m −0.295 3.685 −0.600 1.839 −2.798 

( −0.2) (3.8) ( −0.8) (1.2) ( −1.2) 

I Bσ 2 R e m −0.056 −0.307 0.073 −0.261 0.036 

( −0.7) ( −3.2) (0.8) ( −2.4) (0.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 This is the same market variance measure used earlier. However, for 

the European Union (EU), Japan, and UK, we have daily MSCI market re- 

turn data only for the time period from January 1990 on. Therefore, over 

the period from 1972:01 to 1990:06 in the UK and 1974:02 to 1990:06 in 

the EU and Japan, we use the realized monthly variance over the preced- 

ing six months, again annualized. 
is, momentum strategies in all regions across the world

exhibit conditional betas and payoffs similar to writing

call options on the local market index. 

In Panel C, we add as a conditioning variable the re-

alized daily market return variance, annualized, over the
preceding 126 trading days (six months): 14 

˜ R 

P 3 −P 1 
t = [ α0 + αB I B,t−1 + αV ˆ σ

2 
m,t−1 ] 

+ [ β0 + βB I B,t−1 + βV ˆ σ
2 
m,t−1 ] ̃  R 

e 
m,t + ˜ εt . (10)

Two interesting results emerge. First, higher ex ante mar-

ket variance is generally associated with more negative

momentum strategy betas. Second, higher market variance

is also associated with strongly lower future abnormal re-

turns to momentum, net of the market return. This last re-

lation is statistically significant in all markets, and again is

consistent with our earlier results for the US market over

the longer period. 

In Panel D, we again use the I Bσ 2 ≡ (1 / ̄v B )I B,t−1 · ˆ σ 2 
m

measure introduced in Section 3.6 , designed to capture

panic periods when the market has fallen and volatility is

high. In addition, in these regressions, we instrument for

time variation in market beta using I B,t−1 , ˆ σ 2 
m,t−1 , and I Bσ 2 .

We run the regression 

˜ R 

P 3 −P 1 
t = [ α0 + αB I B σ 2 ] 

+ [ βB I B,t−1 + βV ˆ σ
2 
m,t−1 + βBV I B σ 2 ] ̃  R 

e 
m , t + ˜ εt . (11)

The results in Panel D of Table 9 are consistent with our

earlier results for the US over the longer period. The coeffi-

cient on the interaction term I Bσ 2 is negative, economically

large, and statistically significant in all markets and for the

global strategy. 

In summary, the results in Table 9 suggest that momen-

tum strategies in these different equity markets are also

short volatility and have significantly lower abnormal re-

turns in panic periods characterized by poor lagged market

returns and high market volatility. 

One other point of interest is that, in Panels C and D of

Table 9 , the ˆ α for the Japan momentum strategy is consid-

erably larger, and in Panel C it is in fact significant at a 5%

level. We explore the implications of this finding further in

Section 5.4 , where we apply a dynamic Japanese momen-

tum strategy that takes into account the forecastability of

both the expected return and volatilty. 

5.3. Cross-sectional momentum in other asset classes 

Evidence of the option-like payoffs of momentum

strategies in bear markets outside of US equities, and in ev-

ery other equity market we examine, gives credence to this

feature of momentum being a robust phenomenon and

not likely due to chance. For further robustness, we exam-

ine momentum strategies in the non-equity asset classes.

In addition to providing another out of sample test for

the option-like payoffs of momentum strategies in bear

markets, finding the same option-like asymmetry in these

asset classes would present a challenge to the Merton

(1974) explanation. 

Table 10 presents the results of time series regres-

sions for the non-equity asset class momentum strategies
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Table 10 

Time series regressions for other asset classes. 

The table reports the estimated coefficients and t -statistics from re- 

gressions of the monthly returns to zero-investment momentum strate- 

gies in each asset class on the indicated set of independent variables. GA 

and GAll are, respectively, the global strategies across all non-equity asset 

classes and across all asset classes including equities, in which each as- 

set class and equity market is weighted by the inverse of their full sam- 

ple volatility. The estimated intercept and the coefficients on I B,t−1 and 

I Bσ 2 are all multiplied by 12 × 100 to put them in annualized, percent- 

age terms. FI = fixed income; CM = commodities; FX = foreign exchange; 

EQ = equity. 

Variable Asset class, time period start 

FI, CM, FX, EQ, GA, GAll, 

1983:02 1973:02 1980:02 1979:02 1973:02 1973:02 

Panel A: Alpha and beta in bear markets 

α 0.006 16.302 4.745 8.575 4.653 4.639 

(0.0) (3.7) (2.2) (3.8) (4.6) (5.0) 

I B 0.798 −10.470 −8.221 −0.575 −2.426 −3.294 

(0.3) ( −1.4) ( −2.5) ( −0.1) ( −1.1) ( −1.3) 

R e m 0.186 0.308 0.382 0.272 0.162 0.082 

(3.1) (4.1) (4.4) (6.0) (2.7) (1.9) 

I B R 
e 
m −0.362 −0.730 −1.092 −0.620 −0.485 −0.366 

( −2.7) ( −4.5) ( −8.6) ( −8.5) ( −3.9) ( −4.4) 

Panel B: Optionality in bear markets 

α 0.006 16.302 4.745 8.575 4.653 4.639 

(0.0) (3.8) (2.2) (3.8) (4.6) (5.1) 

I B 1.994 7.014 −4.096 6.248 1.142 3.746 

(0.6) (0.7) ( −0.9) (1.1) (0.4) (1.1) 

R e m 0.186 0.308 0.382 0.272 0.162 0.082 

(3.1) (4.1) (4.4) (6.0) (2.7) (1.9) 

I B R 
e 
m −0.278 −0.205 −0.911 −0.485 −0.222 −0.106 

( −1.4) ( −0.8) ( −5.0) ( −4.6) ( −1.2) ( −0.9) 

I B I U R 
e 
m −0.197 −1.102 −0.405 −0.312 −0.563 −0.605 

( −0.6) ( −2.5) ( −1.4) ( −1.7) ( −1.8) ( −2.9) 

Panel C: Market-variance effects 

α −0.297 20.050 7.527 9.277 5.835 5.963 

( −0.2) (3.5) (2.4) (3.8) (4.9) (5.9) 

I B 1.057 −9.022 −7.475 0.634 −0.759 0.554 

(0.4) ( −1.2) ( −2.2) (0.2) ( −0.3) (0.2) 

ˆ σ 2 
m 0.136 −0.211 −0.503 −0.047 −0.756 −0.585 

(0.2) ( −1.1) ( −1.2) ( −0.7) ( −1.8) ( −3.0) 

R e m 0.278 0.522 0.429 0.299 0.201 0.104 

(2.1) (4.3) (4.0) (6.3) (3.0) (2.3) 

I B R 
e 
m −0.385 −0.712 −1.045 −0.549 −0.374 −0.267 

( −2.8) ( −4.4) ( −8.0) ( −6.6) ( −2.7) ( −2.8) 

ˆ σ 2 
m R 

e 
m −55.971 −8.820 −9.702 −2.001 −23.842 −8.605 

( −0.8) ( −2.2) ( −0.8) ( −1.7) ( −1.2) ( −1.5) 

Panel D: Bear-market—market-variance interaction effects 

α 0.218 13.803 3.419 9.240 4.766 4.853 

(0.2) (3.7) (1.8) (4.7) (5.1) (5.6) 

I Bσ 2 0.026 −4.808 −4.655 −2.683 −2.308 −4.056 

(0.0) ( −1.2) ( −2.1) ( −1.2) ( −1.8) ( −2.8) 

R e m 0.263 0.772 0.672 0.384 0.238 0.128 

(1.9) (5.0) (3.0) (5.9) (2.0) (2.0) 

I B R 
e 
m −0.281 −1.207 −1.293 −0.669 −0.424 −0.303 

( −0.8) ( −4.8) ( −5.0) ( −6.4) ( −2.3) ( −2.7) 

ˆ σ 2 
m R 

e 
m −46.141 −18.887 −60.175 −8.332 −49.075 −22.030 

( −0.6) ( −3.4) ( −1.4) ( −2.4) ( −0.7) ( −1.0) 

I Bσ 2 R e m −0.105 0.344 0.268 0.222 0.074 0.095 

( −0.3) (2.5) (1.3) (1.9) (0.4) (0.6) 
similar to those in Table 9 for international equities. First, 

the set of I B,t−1 · ˜ R e m 

coefficients and t -statistics in the last 

row of Panel A shows that, in all asset classes, the momen- 

tum portfolio’s market beta is significantly more negative 

in bear markets. The intuition that, following a bear mar- 

ket, the loser side of the momentum portfolio will have 

a high market beta remains valid in the non-equity as- 

set classes as well. The I B,t−1 coefficients in the second 

row of Panel A also provide evidence weakly consistent 

with the earlier finding that market-adjusted momentum 

returns are lower following bear markets. The point esti- 

mates are all negative, except for bonds, but only in the 

currency market is the coefficient significant. 

Panel B assesses whether the optionality present in 

cross-sectional equity momentum strategies is also present 

in other asset classes. The I B,t−1 ̃
 I U,t ̃

 R e m,t coefficient is nega- 

tive for each of the four asset classes and the two com- 

posite portfolios, but it is statistically significant at a 5% 

level only for commodities. This result is intriguing. While 

a model such as Merton (1974) argues that equities should 

exhibit option-like features, it is not clear that such a 

model would easily explain the optionality present in com- 

modity futures and weakly in currency markets. 

Panel C of Table 10 estimates Eq. (10) for the other as- 

set class momentum strategies. The signs of the relation 

between lagged volatility and momentum strategy returns 

are again negative in the commodity (CM), currency (FX), 

and equity (EQ) futures asset classes. Panel D uses the in- 

teractive variable I Bσ 2 as an instrument for volatile bear 

markets. As in Table 9 , we control for variation in market 

beta associated with I B,t−1 , ˆ σ 2 
m 

, and the interaction term 

itself. In all asset classes except fixed income (FI), the coef- 

ficient on this interaction term is negative, consistent with 

our previous findings in US and international equity mar- 

kets. However, except for FX and the GAll portfolio, the co- 

efficient is not significant at a 5% level. 

These findings are largely consistent with the results 

for US equities and for other equity markets. In addition 

to providing more robustness, these findings make it more 

difficult to reconcile under a Merton (1974) –style theory, 

which is better suited for equity returns. 

5.4. Dynamic strategies in other markets and asset classes 

Given the robustness of the option-like features to mo- 

mentum in other equity markets and other asset classes, 

we examine the efficacy of the dynamic momentum strate- 

gies constructed as in Section 4 to examine whether the 

dynamic strategy continues to perform well when imple- 

mented in these other asset markets. 

We form the dynamic momentum strategy as before 

using the ex ante expected return and volatility of the 

WML portfolio in each market using the instruments from 

the previous analysis—the interaction of the ex-ante bear 

market indicator for that asset class, I B,t−1 and the as- 

set class market volatility over the preceding six months 

to forecast the conditional expected return and volatil- 

ity. Precise specifications of the forecasting model and the 

GARCH model parameters for each asset class are given in 

Appendix D . 
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Table 11 

Dynamic and constant volatility momentum across asset classes. 

Panel A presents the annualized Sharpe ratios of monthly momentum strategies in each of the different asset classes and markets we study. For each asset 

class, WML (winner-minus-loser) denotes the baseline $1 long–$1 short static momentum strategy, cvol denotes the constant-volatility strategy in which 

the WML weights are scaled by the ex ante forecast volatility of the WML strategy, using daily returns over the prior six months to estimate volatility, 

and dyn is the dynamic, maximum Sharpe ratio strategy described in Appendix C , which dynamically weights the momentum strategy by the conditional 

Sharpe ratio using ex ante forecasts of the conditional mean and variance of the momentum strategy’s returns using our market stress indicators and past 

six-month volatility estimates. ∗ indicates a fully dynamic implementation in which the weighted combination of the dynamic strategies themselves is also 

employed to aggregate up to the global equity (GE) global asset class (GA) and global all (GAll) strategies that combine strategies across regions and asset 

classes. For all other global combinations, each of the component strategies is scaled to have equal volatility and then the strategies are equally weighted. 

Panel B reports the intercepts or alphas and their t -statistics from spanning regressions of the cvol and optimal dynamic (dyn) portfolios in each market 

and asset class on the static WML momentum strategy and on each other, within each market and asset class. Each spanning regression also includes 

the market portfolio for that asset class and the interactions of the market portfolio with the panic state indicator I Bσ 2 for each asset class to capture 

conditional variation in the betas. The starting date for each series is indicated in the table; all series end in 2013:05. EU = European Union; JP = Japan; 

UK = United Kingdom; FI = fixed income; CM = commodities; FX = foreign exchange; EQ = equity. 

Series Asset class/market, series start month 

EU, JP, UK, US, GE, GE ∗ , FI, CM, FX, EQ, GA, GA ∗ , GAll, GAll ∗ , 

90:06 90:06 90:06 72:07 72:07 72:07 83:06 73:02 80:02 79:02 73:02 73:02 73:02 73:02 

Panel A: Annualized strategy Sharpe ratio (Skewness) 

WML 0.462 0.067 0.465 0.283 0.513 0.004 0.587 0.296 0.705 0.676 0.754 

( −0.34) (0.02) ( −0.62) ( −0.04) ( −0.34) ( −0.24) (0.01) ( −0.54) ( −0.18) ( −0.48) ( −0.33) 

cvol 0.886 0.160 0.751 0.519 0.732 0.020 0.686 0.423 0.800 0.791 0.942 

(0.55) ( −0.13) ( −0.02) ( −0.09) (0.13) ( −0.45) ( −0.07) ( −0.47) (0.05) ( −0.31) ( −0.18) 

dyn 1.130 0.416 0.891 0.646 0.752 0.956 0.066 0.803 0.653 0.843 0.973 1.028 1.139 1.223 

(0.97) (1.41) (0.36) (0.08) (0.33) (1.11) (0.06) (0.39) ( −0.20) (0.25) (0.11) ( −0.19) (0.20) (0.44) 

Panel B: Spanning tests 

Regression of cvol on WML, R e m and I Bσ 2 R e m 
α 5.44 3.09 6.14 5.09 2.77 0.11 2.01 1.34 1.47 0.58 0.86 

t ( α) (4.1) (1.8) (3.4) (4.3) (4.7) (0.4) (3.2) (3.4) (2.8) (4.4) (5.2) 

Regression of dyn on WML, R e m and I Bσ 2 R e m 
α 13.75 8.50 14.28 7.26 4.59 6.60 2.51 6.71 3.36 3.31 2.34 3.24 2.83 4.69 

t ( α) (4.9) (2.7) (3.7) (3.5) (4.8) (6.6) (2.5) (3.3) (2.9) (2.9) (4.5) (5.3) (5.3) (7.6) 

Regression of dyn on cvol, R e m and I Bσ 2 R e m 
α 9.01 7.27 8.99 3.00 1.95 4.48 2.48 3.98 1.84 1.30 1.59 2.68 1.77 3.97 

t ( α) (3.9) (2.4) (2.9) (1.9) (2.8) (5.3) (2.5) (2.5) (2.0) (1.8) (3.7) (4.7) (4.2) (6.9) 

Regression of cvol on dyn, R e m and I Bσ 2 R e m 
α 0.01 0.38 0.72 1.92 0.48 0.30 −0.21 0.14 −0.11 −0.02 −0.20 0.21 −0.16 −0.06 

t ( α) (0.0) (0.1) (0.2) (1.2) (0.7) (0.4) ( −0.2) (0.1) ( −0.1) ( −0.0) ( −0.5) (0.4) ( −0.4) ( −0.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel A of Table 11 reports the Sharpe ratio and skew-

ness (in parentheses) of the simple $1 long–$1 short WML

momentum strategy in each market and asset class, as well

as a constant volatility momentum strategy and the dy-

namic momentum strategy as described above. In addi-

tion, we report global combinations of the equity momen-

tum strategies across all markets (GE), the non-equity asset

classes (GA), and a combination of all equity markets and

non-equity asset classes (GAll). 

As Panel A of Table 11 shows, a marked improvement

in Sharpe ratio exists going from the static WML momen-

tum strategy to a constant volatility momentum strategy

to our dynamic momentum strategy in every single mar-

ket and asset class we study except fixed income. In most

cases, our dynamic strategy doubles the Sharpe ratio over

the traditional static momentum portfolio. Furthermore,

our dynamic momentum strategy resurrects positive re-

turns in markets in which the typical momentum port-

folio has failed to produce positive profits, such as Japan.

In Japan, the static, classic momentum portfolio delivers a

0.07 Sharpe ratio, but our dynamic momentum portfolio

in Japan produces a 0.42 Sharpe ratio. (Alas, even the dy-
namic strategy does not deliver a significant Sharpe ratio

for fixed income.) 

The skewness numbers (in parentheses) are also in-

teresting, as the predominantly negative skewness of the

static momentum strategies across all markets is apparent,

but the dynamic momentum strategies deliver mostly pos-

itive skewness consistent with amelioration of the crashes

in plots of the returns to these strategies. 

We also report results for a fully dynamic portfolio that

is a weighted combination of the individual asset class

or market dynamic strategies, in which the weighs are

based on the ex ante conditional volatility of each com-

ponent strategy. That is, each of the component strate-

gies is scaled to have equal volatility (ex ante), and then

the strategies are equally weighted. In this way, we are

also using cross-sectional information on the strength of

the dynamic signal of each component strategy to build a

fully dynamic combination portfolio across all asset classes.

We denote these fully dynamic strategies with an asterisk

( ∗) in Table 11 . As the table indicates additional Sharpe

ratio improvement is evident from this additional twist

on our dynamic momentum strategies, providing another
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robustness test on the use of conditional mean and vari- 

ance forecastability in enhancing the returns to momen- 

tum strategies. 

Panel B of Table 11 reports results from spanning 

tests of the static WML portfolio, the constant volatility 

strategy, and the dynamic strategy within each market 

and asset class. These daily return regressions also include 

interactions of the excess market return and the excess 

market return (for that asset class) interacted with the 

asset class specific panic state indicator I Bσ 2 to capture 

conditional variation in the betas. 15 The first row reports 

alphas (and their t -statistics) of the constant volatility 

strategy on WML in each market and asset class, as well 

as globally across equity markets (GE), asset classes (GA), 

and all markets and asset classes (GAll). Consistent with 

the results of Barroso and Santa-Clara (2015) for US equi- 

ties, the constant volatility strategy delivers positive alpha 

relative to the static momentum strategy in every single 

market and asset class that is highly significant (except 

Japan and fixed income, where momentum does not yield 

statistically significant positive returns to begin with). 

The second row reports alphas of the dynamic momen- 

tum strategy with respect to WML. Here too the alphas are 

all positive and statistically significant and, in every single 

market and asset class, are larger than the constant volatil- 

ity momentum alphas. Because both the dynamic and con- 

stant volatility strategies are scaled to the same volatility, 

this suggests that the dynamic momentum portfolio of- 

fers improved mean-variance efficiency over the constant 

volatility portfolio, which it should according to theory. 

To test this notion more formally, the last two sets of 

rows of Panel B of Table 11 report the alphas from re- 

gressions of the dynamic strategy returns on the constant 

volatility strategy returns, and vice versa. The results are 

consistent with our previous findings. In virtually every 

market and asset class, the dynamic momentum portfolio 

delivers positive and statistically significant alpha relative 

to the constant volatility strategy, suggesting that the con- 

stant volatility strategy does not span the dynamic strat- 

egy in any market or asset class. Conversely, in every mar- 

ket and asset class the constant volatility strategy fails to 

produce a significant alpha with respect to the dynamic 

strategy, suggesting that the dynamic momentum strategy 

spans the constant volatility strategy in every market and 

asset class. These results, shown out-of-sample in eight 

other markets and asset classes, make a compelling case 

for the robustness of the dynamic momentum portfolio 

based on the optionality insights of momentum strategies 

in every market. 

Overall, the consistent evidence of the optionality of 

momentum strategies, conditional betas and return pre- 

mia, and the significant improvement from our dynamic 

weighting scheme across many different markets and 

vastly different asset classes provides a wealth of out- of- 
15 As with our spanning tests in Section 4 , the dynamic strategy used 

in Panel B is based on ex ante forecasts of the mean and variance of the 

residual from a regression of the WML strategy on the excess market re- 

turn R e m and the interacted market return I Bσ 2 R e m , using the panic state 

indicator and lagged residual variances as forecasting variables. See foot- 

note 12. 
sample evidence. Momentum crashes and their forecasta- 

bility by bear market and ex ante volatility measures are 

a reliable and robust feature of momentum strategies that 

can provide clues as to the underlying source of this return 

factor. 16 

6. Conclusions 

In normal environments, consistent price momentum is 

both statistically and economically strong and manifests it- 

self across numerous equity markets and a wide range of 

diverse asset classes. 

However, in panic states, following multi year market 

drawdowns and in periods of high market volatility, the 

prices of past losers embody a high premium. When poor 

market conditions ameliorate and the market starts to re- 

bound, the losers experience strong gains, resulting in a 

momentum crash as momentum strategies short these as- 

sets. We find that, in bear market states, and in particu- 

lar when market volatility is high, the down-market be- 

tas of the past losers are low, but the up-market betas are 

very large. This optionality does not appear to generally 

be reflected in the prices of the past losers. Consequently, 

the expected returns of the past losers are very high, and 

the momentum effect is reversed during these times. This 

feature does not apply equally to winners during good 

times, however, resulting in an asymmetry in the win- 

ner and loser exposure to market returns during extreme 

times. 

These results are shown to be robust. We obtain con- 

sistent results in eight different markets and asset classes, 

as well as in multiple time periods. Moreover, these crash 

periods are predictable. We use bear market indicators 

and ex ante volatility estimates to forecast the conditional 

mean and variance of momentum strategies. Armed with 

these estimates, we create a simple dynamically weighted 

version of the momentum portfolio that approximately 

doubles the Sharpe ratio of the static momentum strat- 

egy and is not spanned by constant volatility momentum 

strategies or other factors, and we do so consistently in ev- 

ery market, asset class, and time period we study. 

What can explain these findings? We examine a vari- 

ety of explanations ranging from compensation for crash 

risk to volatility risk, to other factor risks such as the Fama 

and French (1993) factors, but we find that none of these 

explanations can account fully for our findings. For eq- 

uity momentum, a Merton (1974) story for the option-like 

payoffs of equities could make sense, but the existence of 

the same phenomena and option-like features for momen- 

tum strategies in futures, bonds, currencies, and commodi- 

ties makes this story more challenging. Alternatively, these 

effects can be loosely consistent with several behavioral 

findings, in which in extreme situations individuals tend to 

be fearful and appear to focus on losses, largely ignoring 
16 Although beyond the scope of this paper, it would be interesting to 

see if other momentum-type strategies, such as earnings momentum in 

equities ( Chan, Jegadeesh, and Lakonishok, 1996 ), or time-series momen- 

tum in futures contracts ( Moskowitz, Ooi, and Pedersen, 2012 ), or cross- 

momentum effects ( Cohen and Frazzini, 2008 ) exhibit similar features. 
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probabilities. 17 Whether this behavioral phenomenon is

fully consistent with the empirical results shown here is

a subject for further research and would indicate that the

behavior of market participants in each of these markets

and asset classes is affected similarly, despite the fact that

the average and marginal investor in these various markets

are likely to be different along many other dimensions. 
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Appendix A. Detailed description of calculations 

A.1. Cumulative return calculations 

The cumulative return on an (implementable) strategy

is an investment at time 0, which is fully reinvested at

each point i.e., when no cash is put in or taken out. That

is, the cumulative arithmetic returns between times t and

T is denoted R ( t, T ). 

R (t, T ) = 

T ∏ 

s = t+1 

(1 + R s ) − 1 , (12)

where R s denotes the arithmetic return in the period end-

ing at time t , and r s = log (1 + R s ) denotes the log-return

over period s , 

r(t, T ) = 

T ∑ 

s = t+1 

r s . (13)

For long-short portfolios, the cumulative return is 

R (t, T ) = 

T ∏ 

s = t+1 

(1 + R L,s − R S,s + R f,t ) − 1 , (14)
17 See Sunstein and Zeckhauser (2008) , Loewenstein, Weber, Hsee, and 

Welch (2001) , and Loewenstein (2000) . 
where the terms R L, s , R S, s , and R f, s are, respectively, the

return on the long side of the portfolio, the short side of

the portfolio, and the risk-free rate. Thus, the strategy re-

flects the cumulative return, with an initial investment of

V t , which is managed in the following two steps. 

1. Using the $ V 0 as margin, you purchase $ V 0 of the long

side of the portfolio, and short $ V 0 worth of the short

side of the portfolio. Note that this is consistent with

Regulation T requirements. Over each period s , the mar-

gin posted earns interest at rate R f, s . 

2. At the end of each period, the value of the investments

on the long and the short side of the portfolio are ad-

justed to reflect gains to both the long and short side of

the portfolio. So, for example, at the end of the first pe-

riod, the investments in both the long and short side of

the portfolio are adjusted to set their value equal to the

total value of the portfolio to V t+1 = V t · (1 + R L − R S +
R f ) . 

This methodology assumes that there are no margin

calls, etc., except at the end of each month. These calcu-

lated returns do not incorporate transaction costs. 

A.2. Calculation of variance swap returns 

We calculate the returns to a daily variance swap on the

S&P 500 using daily observations on the Standard & Poor’s

500 Index (SPX) and the VIX and daily levels of the one-

month Treasury bill rate. The historical daily observations

on the SPX and the VIX, beginning on January 2, 1990, are

taken from the Chicago Board Options Exhange (CBOE) VIX

website. 18 The daily one-month interest rate series is taken

from Ken French’s data library. 

The VIX is calculated using a panel of S&P 500 in-

dex options with a wide range of strike prices and with

two maturity dates, generally the two closest-to-maturity

contracts, weighted in such a way so as to most closely

approximate the swap rate for a variance swap with a

constant maturity of 30 calendar days. 19 The calculation

method used by the CBOE makes the VIX equivalent to the

swap rate for a variance swap on the S&P 500 over the

coming 30 calendar days. However, the methodology used

by the CBOE is to 1 annualize this variance (2) and take the

square-root of the variance (to convert to volatility), mul-

tiply by one hundred to convert to percentage terms. 

Given the VIX construction methodology, we can calcu-

late the daily return on a variance swap, from day t −1 to

day t , as 

R v s,t = D t 

[
1 

21 

(
252 

[ 
100 · log 

(
S t 

S t−1 

)] 2 
− VIX 

2 
t−1 

)

+ 

20 

21 

(
VIX 

2 
t − VIX 

2 
t−1 

)] 
. (15)

D t is the 20 trading day discount factor. This is calcu-

lated as D t = (1 + r 1 m,t ) 
20 / 252 , where r 1 m, t is the annual-

ized one-month treasury bill yield as of day t , from Ken
18 The daily data for the new VIX are available at http://www.cboe.com/ 

micro/VIX/historical.aspx . 
19 See Exchange (2003) for a full description of the VIX calculation. 

http://www.cboe.com/micro/VIX/historical.aspx
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French’s website. VIX t is the level of the VIX as quoted at 

the end of day t and S t is the level of the S&P 500, adjusted 

for all corporate actions, at the end of day t . The factors of 

252 and 100 in the equation are because the VIX is quoted 

in annualized, percentage terms. 

This equation is given a flat forward variance curve. 

That is, we are implicitly making the assumption that the 

swap rate on 20 trading day and 21 trading day variance 

swap rates on day t are identical (and equal to VIX 

2 
t ). For 

the market, this approximation should be fairly accurate. 

Appendix B. Exposure to size and value factors 

We regress the WML momentum portfolio returns on 

the three Fama and French (1993) factors consisting of 

the CRSP VW index return in excess of the risk-free rate, 

a small minus big (SMB) stock factor, and a high BE/ME 

minus low BE/ME (HML) factor, all obtained from Ken 

French’s website. In addition, we interact each of the fac- 

tors with the panic state variable I Bσ 2 . The results are re- 

ported in Table B1 , in which the abnormal performance of 

momentum continues to be significantly more negative in 

bear market states, whether we measure abnormal perfor- 

mance relative to the market model or to the Fama and 

French (1993) three-factor model, with little difference in 

the point estimates. 

The next two columns of the table repeat the market 

model regressions using HML as the dependent variable 

instead of WML. For these regressions, we use the mod- 

ified HML portfolio of Asness and Frazzini (2011) . Asness 

and Frazzini show that the Fama and French (1993) HML 

construction, by using lagged market prices in its BE/ME 

calculations, inherently induces some positive covariance 

with momentum. They advocate using the most recent 

(last month’s) price to compute BE/ME ratios in construct- 
Table B1 

Conditional estimation of winner-minus-loser (WML), high-minus-low (HML), and

This table presents the results of monthly time-series regressions. The depende

the HML–devil (HML-d) portfolio of Asness and Frazzini (2011) , the SMB portfolio

and 50% HML-devil. The independent variables are intercept α, the normalized

variable interacted with the excess market return and the Fama and French (1993

WML and SMB regressions and January 1927–December 2012 for the HML-d and 

annualized, percentage terms by multiplying by 1,200. 

Variable Dependent

WML HML-d 

(1) (2) (3) (4) 

α 24.93 26.95 2.96 3.14

(8.6) (9.4) (1.8) (2.2)

I Bσ 2 −28.80 −26.94 9.32 6.57

( −5.8) ( −5.4) (3.3) (2.7)

r e m −0.17 −0.15 −0.0

( −3.3) ( −2.7) ( −0.6

I Bσ 2 · r e m −0.54 −0.44 0.33

( −12.9) ( −7.8) (16.3

r SMB −0.16 

( −1.9) 

I Bσ 2 · r SMB −0.18 

( −2.2) 

r HML −0.38 

( −4.8) 

I Bσ 2 · r HML 0.05 

(0.7) 
ing their HML factor, which they term HML-devil (HML- 

d), to examine the value effect separately from momen- 

tum. As Table B1 shows, the abnormal return of the HML 

portfolio increases in the panic states, the opposite of what 

we find for momentum. This is not surprising for several 

reasons. First, momentum strategies buy past winners and 

sell past losers, while value strategies typically buy longer- 

term past losers and sell winners [see DeBondt and Thaler 

(1987) and Fama and French (1996) ]. Also, the correla- 

tion between HML-d and UMD is approximately -0.50. Fi- 

nally, this result is consistent with the intuition for why 

the market beta of the WML portfolio changes with past 

market returns. Because growth (low book-to-price) stocks 

have generally had high past returns and value stocks low 

past returns, the same intuition suggests that HML’s beta 

should be high when I B,t−1 = 1 , and it is. HML’s market 

beta is higher by 0.33 when I B,t−1 = 1 ( t -statistic = 16.3),

as indicated by the interaction term. More directly, the 

correlation of HML with the excess return on the market 

during panic states is 0.59, but during normal times it is 

−0 . 10 . Conversely, for the WML portfolio, the correlation 

with the market is 0.02 during normal times and −0.71 

when I B,t−1 = 1 . 

The next two columns of Table B1 repeat this exer- 

cise using SMB as the dependent variable. The premium 

on SMB is statistically significantly higher in panic states 

as well, but its beta does not change significantly during 

these states. This makes sense because size is a poor proxy 

for recent short-term performance. 

Finally, the last two columns run regressions for a 

50–50 combination of WML and HML-d following Asness, 

Moskowitz, and Pedersen (2013) , who show that a com- 

bination of value and momentum diversifies away a va- 

riety of exposures including aggregate market and liquid- 

ity risks. Given the opposite-signed results for WML and 
 small-minus-big (SMB) premia. 

nt variable is indicated at the head of each column, and is either: WML, 

 return of Fama and French (1993) ; or (4) a portfolio which is 50% WML 

 ex ante forecasting variable I Bσ 2 ≡ (1 / ̄v B )I B,t−1 · ˆ σ 2 
m , and this forecasting 

) HML and SMB returns. The sample is January 1927–March 2013 for the 

WML + HML-d portfolios. The coefficients for α and I Bσ 2 are converted to 

 Variable; return series 

SMB WML+HML-d 

(5) (6) (7) (8) 

 1.91 0.34 13.41 14.08 

 (1.5) (0.3) (10.0) (11.0) 

 5.33 5.44 −12.01 −11.13 

 (2.4) (2.6) ( −5.2) ( −5.1) 

2 0.21 −0.09 

) (9.4) ( −4.0) 

 −0.01 −0.11 

) ( −0.4) ( −5.8) 



K. Daniel, T.J. Moskowitz / Journal of Financial Economics 122 (2016) 221–247 245 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HML-d on the panic state variables, it is not surprising that

a combination of WML and HML-d hedges some of this

risk. However, since the magnitude of the effects on WML

are much larger than those of HML, the net effect is still

a reduction in returns and a decrease in beta during panic

states for the momentum-value combination. 20 

Appendix C. Maximum Sharpe ratio strategy 

The setting is discrete time with T periods from

1 , . . . , T . We can trade in two assets, a risky asset and a

risk free asset. Our objective is to maximize the Sharpe ra-

tio of a portfolio in which, each period, we can trade in or

out of the risky asset with no cost. 

Over period t + 1 which is the span from t to t + 1 , the

excess return on a risky asset ˜ r t+1 is distributed normally,

with time- t conditional mean μt and conditional variance

σ 2 
t . That is, 

μt = E t [ ̃ r t+1 ] (16)

and 

σ 2 
t = E t 

[
( ̃ r t+1 − μt ) 

2 
]
, (17)

where we assume that at t = 0 the agent knows μt and σ t

for t ∈ { 0 , . . . , T − 1 } . 
The agent’s objective is to maximize the full-period

Sharpe ratio of a managed portfolio. The agent manages

the portfolio by placing, at the beginning of each period,

a fraction w t of the value of the managed portfolio in the

risky asset and a fraction 1 − w t in the risk-free asset. The

time t expected excess return and variance of the managed

portfolio in period t + 1 is then given by 

˜ r p,t+1 = w t ̃  r t+1 ∼ N 

(
w t μt , w 

2 
t σ

2 
t 

)
. (18)

The Sharpe ratio over the T periods is 

SR = 

E 

[
1 
T 

∑ T 
t=1 ̃  r p,t 

]
√ 

E 

[
1 
T 

∑ T 
t=1 ( ̃ r p,t − r̄ p ) 2 

] , (19)

where the r̄ p in the denominator is the sample average per

period excess return ( 1 T 

∑ T 
t=1 ̃  r p,t ). 

Given the information structure of this optimization

problem, maximizing the Sharpe ratio is equivalent to solv-

ing the constrained maximization problem: 

max 
w 0 , ... ,w T−1 

E 

[ 

1 

T 

T ∑ 

t=1 

˜ r p,t 

] 

subject to E 

[ 

1 

T 

T ∑ 

t=1 

( ̃ r p,t − r̄ ) 2 

] 

= σ 2 
p 

(20)

If the period length is sufficiently short, then

E [( ̃ r p,t − r̄ ) 2 ] ≈ σ 2 
t = E t 

[
( ̃ r t+1 − μt ) 

2 
]
. With this ap-

proximation, substituting in the conditional expectations
20 One possibility for the dominance of momentum here is that the 50–

50 momentum-value weighting is based on equal dollar allocation to both 

rather than equal risk allocation. Since momentum is more volatile than 

value, this may be tilting the overall exposure of the combination portfo- 

lio more toward momentum. 
for the managed portfolio from Eq. (16) to (17) gives the

Lagrangian: 

max 
w 0 , ... ,w T−1 

L ≡ max 
w t 

( 

1 

T 

T −1 ∑ 

t=0 

w t μt 

) 

− λ

( 

1 

T 

T −1 ∑ 

t=0 

w 

2 
t σ

2 
t = σ 2 

p 

) 

. 

(21)

The T first order conditions for optimality are 

∂L 

∂w t 

∣∣∣∣
w t = w 

∗
t 

= 

1 

T 

(
μt − 2 λw 

∗
t σ

2 
t 

)
= 0 ∀ t ∈ { 0 , . . . , T −1 } 

(22)

giving an optimal weight on the risky asset at time t of 

w 

∗
t = 

(
1 

2 λ

)
μt 

σ 2 
t 

. (23)

That is, the weight placed on the risky asset at time t

should be proportional to the expected excess return over

the next period and inversely proportional to the condi-

tional variance. 

Appendix D. GJR-GARCH forecasts of volatility 

The construction of the dynamic portfolio strategy we

explore in Sections 4 and 5.4 requires estimates of the con-

ditional mean return and the conditional volatility of the

momentum strategies. To forecast the volatility, we first

fit a GARCH process to the daily momentum returns of

each asset class. We fit the GARCH model proposed by

Glosten, Jagannathan, and Runkle (1993) and summarized

by Eqs. (7) and (8) .The maximum likelihood estimates and

t -statistics are: 

Parameter: ˆ μ ˆ ω ˆ α ˆ γ ˆ β

ML-est 0.86 ×10 −3 1.17 ×10 −6 0.111 −0.016 0.896 

t-stat (14.7) (4.2) (14.4) ( −1.6) (85.1) 

We then regress the future realized 22-day WML return

volatility ˆ σ22 ,t+1 on the GJR-GARCH estimate ( ̂  σGARCH , t ),

the lagged 126-day WML return volatility ( ̂  σ126 ,t ), and a

constant. The ordinary least squares (OLS) coefficient es-

timates and t -statistics are 

coefficient: ˆ α ˆ σGARCH , t ˆ σ126 ,t 

coef. est. 0.0010 0.6114 0.2640 

t-stat (3.0) (16.7) (7.2) 

with a regression R 2 
adj 

= 0 . 617 . 21 The fitted estimate of

ˆ σ22 ,t+1 is then used as an input to the dynamic WML port-

folio weight, as discussed in Sections 4 and 5.4 . 

The same estimation procedure is used to generate

a forecast of the future 22-day WML return volatility

in each of the alternative asset classes. The maximum-

likelihood GJR-GARCH parameter estimates and t -statistics
21 The lag one residual autocorrelation is 0.013 ( t -statistic = 0 . 44 ), jus- 

tifying the use of OLS standard errors. Also, the t -statistics on the lag 2–

5 autocorrelations never exceed 1.14. The autocorrelation of the depen- 

dent variable of the regression ( ̂ σ22 ,t ) is large and statistically significant 

( ̂ ρ1 = 0 . 55 , t -statistic = 24 . 5 ). This suggests that the autocorrelation in 

ˆ σ22 ,t results from its forecastable component. The residual from its pro- 

jection on the forecast variables is uncorrelated at any conventional sta- 

tistically significant level. 
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Table D1 

Maximum likelihood estimates of GJR-GARCH model for momentum portfolios. 

Panel A presents the maximum-likelihood estimates of the coefficients of the Glosten, Jagannathan, and Runkle (1993) –generalized autoregressive con- 

ditional heteroskedasticity (GJR–GARCH) model, given by Eqs. (7) and (8) , fitted to daily returns for each of the momentum portfolios we examine in 

Section 5.4 . The estimates of the μ and ω coefficients are multiplied by 10 3 and 10 6 , respectively. Maximum likelihood–based t-statistics are given in 

parentheses. For β , this t-statistic tests whether β = 1 ; for all other parameters, it tests whether the parameter is zero. Panel B presents the results of 

monthly regressions in which we regress the future one month daily volatility of the winner-minus-loser (WML) portfolio on an intercept ( α), on the 

lagged 126-day WML return volatility ( σ 126 ), and on the lagged GJR-GARCH volatility ( σ GARCH ). The starting date for each series is indicated in the table. 

All equity series end on 2013:05:31, and all asset-class series end on 2013:06:03. EU = European Union; JP = Japan; UK = United Kingdom; GLE = global 

equity; FI = fixed income; CM = commodities; FX = foreign exchange; EQ = equity; GA = global asset class; GAll = Global Asset Class + Equity 

Coefficient Asset class/market, series start date 

EU, JP, UK, US, GLE, FI, CM, FX, EQ, GA, GAll, 

90:01:02 90:01:02 90:01:02 72:02:01 72:02:01 83:01:03 72:02:01 79:01:01 78:01:02 72:02:01 72:02:01 

Panel A: GJR–GARCH coefficient estimates 

μ( × 10 3 ) 0.387 0.187 0.316 0.314 0.124 0.024 0.516 0.238 0.322 0.154 0.159 

(5.3) (3.0) (3.4) (6.2) (6.7) (0.6) (5.0) (4.2) (5.3) (5.8) (5.6) 

ω( × 10 6 ) 0.569 0.616 0.364 0.298 0.024 0.027 1.525 0.455 0.619 0.034 0.035 

(2.4) (4.3) (3.3) (4.1) (3.3) (1.4) (4.1) (4.3) (3.9) (1.6) (1.6) 

α 0.089 0.160 0.094 0.104 0.107 0.060 0.055 0.092 0.074 0.037 0.046 

(6.4) (9.8) (7.7) (12.4) (12.1) (4.1) (9.0) (9.0) (6.9) (3.7) (4.2) 

γ −0.020 −0.007 −0.022 −0.026 −0.024 −0.002 −0.008 −0.020 −0.002 −0.011 −0.007 

( −1.6) ( −1.6) ( −2.0) ( −2.8) ( −2.0) ( −1.6) ( −2.3) ( −1.8) ( −1.6) ( −1.6) ( −0.8) 

β 0.912 0.848 0.918 0.907 0.909 0.945 0.940 0.909 0.916 0.966 0.955 

( −5.9) ( −11.4) ( −8.9) ( −11.1) ( −11.4) ( −4.2) ( −8.1) ( −9.6) ( −7.1) ( −2.9) ( −3.2) 

Panel B: Time series regression coefficient estimates 

α( × 10 2 ) 0.053 0.083 0.067 0.036 0.016 0.082 0.177 0.144 0.096 0.065 0.034 

(1.3) (1.8) (1.4) (1.5) (1.5) (4.7) (3.0) (4.4) (2.8) (4.0) (2.8) 

ˆ σ126 0.334 0.126 0.159 0.227 0.280 0.475 0.161 0.125 0.233 0.113 0.180 

(4.7) (1.8) (2.1) (4.3) (5.1) (5.7) (2.2) (1.8) (3.5) (1.1) (2.2) 

ˆ σGARCH 0.561 0.754 0.758 0.682 0.632 0.220 0.665 0.581 0.594 0.637 0.655 

(8.0) (11.4) (9.9) (13.1) (11.6) (2.9) (9.1) (9.3) (9.2) (6.1) (7.9) 

 

 

 

 

 

 

 

and regression estimates and t -statistics are presented in 

Table D1 . 

The parameters above and in Table D1 tell an inter- 

esting story. First, in the regressions, the coefficient on 

the GJR-GARCH estimate of volatility is always significant, 

and the coefficient on the lagged 126-day volatility is al- 

ways smaller but not always statistically significant. There 

appears to be a longer-lived component of volatility that 

ˆ σ126 ,t is capturing. 

Also interesting is the leverage parameter γ . In each of 

the asset classes, the maximum-likelihood estimate of γ
is negative, which means that a strong negative return on 

the WML portfolio is generally associated with a decrease 

in the WML return variance. As noted elsewhere in the lit- 

erature, this coefficient is positive at high levels of statis- 

tical significance for the market return (see, e.g., Glosten, 

Jagannathan, and Runkle (1993) and Engle and Ng (1993) ). 
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