View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by VCU Scholars Compass

Virginia Commonwealth University

'H'Itﬂ"‘l.l COMMOMWEALTH UNIVEREITY VCU SChOIarS Compass
Theses and Dissertations Graduate School
2006

Cowboy: An Agile Programming Methodology for

a Solo Programmer

Ashby Brooks Hollar

Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

b Part of the Computer Sciences Commons

© The Author

Downloaded from
http://scholarscompass.vcu.edu/etd/741

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses

and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

https://core.ac.uk/display/51292464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/741?utm_source=scholarscompass.vcu.edu%2Fetd%2F741&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

Cowboy:
An Agile Programming Methodology for a Solo Programmer

A thesis submitted in partial fulfiliment of the requirements for the degree of
Master of Science at Virginia Commonwealth University.

by

Ashby Brooks Hollar
James Madison University, Bachelor of Science, 1999

Director: Dr. Susan Brilliant,
Professor, Computer Science Department

Virginia Commonweaith University
Richmond, Virginia
December 2006

© Ashby Brooks Hollar, 2006

All Rights Reserved

1

1ii

Acknowledgment

This body of work is dedicated to the late Pocket Buster-Linwood
Hollar, the best friend and companion anyone could ask for. Also to
Duffel Hollar, not Pocket’s replacement but a good successor in my
heart of hearts.

Mom and Dad, thank you being so supportive of me and always
believing in what I could accomplish.

v

ABSTRACT vii

1- INTRODUCTION 1

2- CURRENT THOUGHTS ON COWBOY PROGRAMMING 1

3- BRIEF OVERVIEW OF AGILE PROGRAMMING METHODOLOGIES S

3.1- CORE PRACTICES OF AGILE DEVELOPMENT 6
3.2- POPULAR AGILE METHODOLOGIES EXPLAINED 8
3.2.1 - EXTREME PROGRAMMING 9
3.2.2 — AGILE UNIFIED PROCESS 11
3.2.3 - SCRUM 13
3.2.4 - GETTING REAL 15
4- COWBOY — HOW AGILE PRACTICES CAN HELP 18
4.1- CORE ELEMENTS 18
4.2- CUSTOMER RELATIONSHIP 19
4.3- ITERATIONS | 20
4.4- CODE 21
4.5- TEST DRIVEN DEVELOPMENT 21
4.6- OUTLINE OF THE COWBOY METHODOLOGY 22
4.7- COWBOY, READY TO TEST 24
5- PLANS FOR THE APPLICATION OF COWBOY 24
5.1- PROJECT OVERVIEW 25
5.2- CUSTOMER/PROGRAMMER RELATIONSHIP 25
5.3- MEETINGS 26

5.4- ARTIFACTS 27

5.5- COwBOY SUMMARY AS APPLIED TO VLP 28
5.6- SUMMARY 30

6- FINAL PRODUCT ANALYSIS 30
6.1- CUSTOMER'S IMPRESSION OF THE FINAL PROTOTYPE 30
6.2- DEVELOPER’S IMPRESSION OF THE FINAL PROTOTYPE 32

6.4 SOURCE CODE ANALYSIS 32

7- PROCESS ANALYSIS 33
7.1- COWBOY’S SUCCESSES 33
7.1.1- CUSTOMER/DEVELOPER RELATIONSHIPccccctmiiiinreriesieniensesieieneesiessessessesseseenessens 33

T.1.2 - MEETINGS ...ucutueteueueterereieeeenentnansntstssessasesasesesesesesesesesssesasesesesenestssncatesssesssesesesesesesesesees 34

7. 1.3= TESTING SCRIPTSciuertirieieirteteueaieteseseentetestententesestansasesssenseseeseenseneessensesassessensansane 34

T 1.4= ARTIFACTS c..orviuiueueiereeeieseseeessasesssssasasasasesesessssessssesssssesssssssesasasesesssessssssssssesesesesesasasns 35

7.1.5- CUSTOMER QUESTIONNAIRESccoeiiieiirririeeitetestesssesseeseessesssesssasssessesesssessesssssessanns 35

7.1.6- ITERATIVE BUILDSootiiiiiiiiiiteitinienientenieseestenteseessessesssesseessesssesseensesaensessesnsessessense 36

7.2- COWBOY SHORTCOMINGS IN VLP PROJECT 36
7.2.1- SOURCE CODEcueuiiieieieteiiueisssssssesesesesssasssesesesassssesesessesesassesesessasesasessesasasesssasass 36

7.2.2- MISSING FEATURES......cccutuitrimiiieieeitreteteretetneststeeseseseseetebeseseseseseasssessasasasesesssesesssnes 38

7.3- LIMITATIONS 38
7.4- HAVING A CUSTOMER PROXY 39

8- COWBOY 3.0 - HOW TO IMPROVE THE PROCESS 40
8.1- PROBLEMS IN THE APPLICATION OF COWBOY TO THE VLP PROJECT ...cccvceecuerererenee 40
8.1.1- CUSTOMER / DEVELOPER RELATIONSHIP......cc.coctruirtintantenienienierieneeseestennessensensenesnenee 40

8.1.2- TIME COMMITMENTS0ivreeueueeseseneessesesesesesesesenesesesensnscnsssssesesesesesasasssescnssssesesens 41

8.1.3- TEST DRIVEN DEVELOPMENTccecctivinienterteneeeessesrtenseseessaeseeseessesnsessaessassesssensenses 41

vi

8.2- ADDITIONAL STANDARDS FOR PROFESSIONAL ADAPTATION 42

8.2.1- CODE REPOSITORYcuouiuiiiiiiiieincmmesererneeeeseieeseseesssessses s s neesesescsssesessesesesessnsenns 42
8.2.2- CONTRACTS ...utiiieiitreteeiteteeteestenttensaeeeeseesseesssasssasssasassessseensessseeenseesnsessssesssesnsasssannns 43
9- CONCLUSION 43
APPENDIX A: SOURCES USED 46
APPENDIX B: ARTIFACTS 48
B-1: REPRESENTATIVE GOAL LIST 48
B-2: REPRESENTATIVE STUDENT TASK LIST 49
B-3: REPRESENTATIVE TEACHER TASK LIST 50
B-4: REPRESENTATIVE GLOSSARY 51
APPENDIX C: EXAMPLE PROXY CUSTOMER QUESTIONNAIRE 52
APPENDIX D: EXAMPLE MEETING AGENDA 54
APPENDIX E: EXAMPLE PROXY CUSTOMER TEST SCRIPT S5
APPENDIX F: FINAL CUSTOMER TEST SCRIPT S8
APPENDIX G: RDOC GENERATED DOCUMENTATION EXAMPLE FOR
STUDENT CLASS 63
APPENDIX H: SOURCE CODE FOR STUDENT CLASS 64
APPENDIX I: COMPLETED PROXY QUESTIONNAIRES 65

APPENDIX J: VITA 73

vii

COWBOY:
AN AGILE PROGRAMMING METHODOLOGY FOR A SOLO PROGRAMMER

By Ashby Brooks Hollar

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2006.

Major Director: Dr. Susan Brilliant, Professor, Computer Science Department

Abstract: Very little research in software engineering has focused on the model of a
programmer working alone. These so-called cowboys are disdained for not working in
teams to build software. In reality many cowboys work by themselves due to the
circumstances of their work environment, not because they are unable or unwilling to
work with well with others. These solo programmers could benefit from a methodology
to assist them in consistently developing reliable software on time and within budget
while satisfying the customer’s needs. Cowboy was designed to help fill this void. This
agile-based system incorporates the benefits of agile methodologies into a lightweight,
customer-centered approach to software development for the lone developer. This thesis
describes Cowboy and its successful application in developing a prototype for a web

application.

1- Introduction

Most research in software engineering focuses on getting groups of people to work
together effectively to write large software projects. But what about the programmef who
has to work alone? What about the programmers who are forced to work on projects by
themselves? These programmers are prevalent in software development today.

Examples include a person working as the lone developer for a services company, or a

programmer who is the only one working on a given platform for a larger project.

This paper uses the term cowboy programmers to refer to those who are predominantly
working by themselves, not because they are anti-social and don’t work well with others,
but because the circumstances of the projects they work on mandate they must work
alone. This paper outlines some of the current thoughts on cowboy programming,
surveys some modern agile programming methodologies, explains how agile
programming practices can be adopted to help cowboys create great software, and
outlines an agile cowboy programming methodology, Cowboy. It then explores a real-
world implementation of this methodology, explains the results and examines how it

could be improved.

2- Current Thoughts on Cowboy Programming

When computer science was born, almost all software was written by a single
programmer. The supporting hardware and programming languages at the beginning of
the modern computer age didn’t facilitate the production of complex, massive and
widespread software in use today. As hardware sped up and programming languages

matured, projects grew in both size and scope, eventually requiring people to work

together to produce large pieces of software. Still, the cowboy programmer persisted, not
working with others but instead locking him/herself away until a working product

emerged.

Many famous cowboy programmers have shaped the world we live in today. Alan
Turing, a mathematician who might be viewed as a precursor to the modern programmer,
was described as “a confirmed solitary” [Hodges] as most of his life’s work was achieved
while he was working alone. Bill Gates and Microsoft, Inc. essentially got their start
when he worked alone to write MS BASIC over a five week period in 1975. [Mateosian]
In 1991, while a student at Helsinki University, Linus Torvalds wrote the first Linux
kernel throwing open the floodgates of open source software. In short, there always has

been, and there will continue to be a need for cowboys.

Tex Curtis’s article, “So You Wanna be a Cowboy?”, draws many real-world
comparisons between computer programmers and cowboys. In his mind, cowboys and
programmers are not so different in the obstacles they must overcome, the long, thankless
hours on the trail, many hours of solitary work, and their ability to work as a team in
times of stampede.
Maybe true cowboy programmers would be good after all. Cowboys and
programmers both tend to be introverts who fiercely guard their
independence. Yet others must be able to work with them, especially

under stress. [Curtis]

He suggests that a “maverick” is a better term for the lone programmer who doesn’t get

along with others, quietly sitting alone in the corner, writing code and eating Cheetos.

Curtis [Curtis] offers a perspective about the strengths of actual cowboys and how these

can be embraced by all software developers.

Today, the software development industry stereotypes cowboy programming as follows:
(The lowest level of development) ...in software is associated with a focus
on self-reliance. Software experts often refer to software developers
operating at this level of awareness as mavericks, cowboy programmers,
Lone Rangers, and prima donnas. Software developers at this level tend to
have little tolerance for other people’s ideas. They like to work alone.
They don’t like following standards. The “Not Invented Here” syndrome

thrives.
[McConnell]

McConnell goes on to say that this approach is adequate for environments that employ
few programmers who work independently. However this “lone-wolf” approach scales
poorly to larger projects or organizations. While some software developers do match this
stereotype, not all lone-wolves can be so neatly characterized. This statement was
directed towards large software development houses and not the smaller companies who
only have a single programmer. In a small company a programmer can have his
independence and solitude but must also have the skills to be able to extrapolate

requirements and work with customers and the other departments of the company.

James Bach has written many articles on what he terms “heroes.” Bach is of the opinion
that too much time and effort is spent focusing on the processes of creating software.
“Process is useful, but it is not central to successful software projects. The central issue is
the human processor - the hero who steps up and solves the problems that lie between a

need expressed and a need fulfilled.” [Bach, 95] These single-programmer projects

require heroes to implement them, and even though cowboys are working alone on their
projects, they are not alone in the world. Bach talks of the greatest tool he uses in his
professional life: his peer network. Online communities and conferences are great places
for those involved in software development to engage fellow professionals, seek and
contribute to knowledge bases, and have work reviewed by others. He encourages all,
“...to look up from your project, your technology, and your company, and join the great

conversation of software engineering.” [Bach, 99]

Rather than being a problem or menace, programmers who work alone write much of the
world’s software. The challenge for these cowboys is to produce consistent, easy-to-
maintain code that comes in on budget and on time while meeting customer expectations.
Indeed, these are the very same objectives of team-based software engineering
methodologies, but as experience has shown, even software products developed using
these methodologies largely fail to meet all their requirements. So how can a single
software developer accomplish what even the most ably-managed groups of developers
often fail to do? Perhaps cowboys should adopt the same agile methodologies that are
becoming popular in the team-based realm of software development. The core principles
of agile software development are truly a set of guiding principles and a way of thinking

that are uniquely qualified to guide solo programmers to better software development.

3- Brief Overview of Agile Programming Methodologies
Agile Software Development began in 2001 with the creation of the Agile Software
Manifesto, an online document that is a line in the sand drawn by seventeen men working
to find better ways of creating software. [Beck, 01]
Manifesto for Agile Software Development
We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Agile programming eliminates much of the documentation and process overhead of
formal software development and replaces it with customer interaction, working code,
anticipating and responding favorably to change, and respecting and valuing the
individuals involved. It attempts to remove many of the stumbling blocks that have
plagued software development from the beginning. Agile relies on working code and
customer feedback to direct the project and make sure that features are added based on

what the customer wants/needs, not just because an engineer thinks it is “neat.”

The signatories of the Agile Manifesto realized there are many shortcomings in modern
software development methodologies. For example, requirements and contracts must be
set in stone at the beginning of the process, making change impossible, costly, or at the

least very troublesome. Also, much time and effort is wasted on creating documentation,

diagrams, or other artifacts that are not required in the final deliverable. Since Agile
strips away so much of the non-software writing processes of software engineering, many
“old-school” developers think that any agile methodology itself is cowboy programming.

[McBeen]

The signatories realized that contemporary software development methodologies did not
adapt well to change. Changes to the initial requirements are often necessary during
development. Requirements, painstakingly extracted from customers at the outset, may
have been incomplete or misunderstood by the engineers. Customers may have been
confused and communicated their needs inaccurately, or the needs of the customer may
change over the development life-cycle. Non-agile methodologies attempt to deal with
change by contractually eliminating it from the project and not allowing new or different
customer needs to be considered without re-negotiating price and delivery date. Agile
programming methodologies expect and even embrace change as a normal part of

software development. [Beck, 99]

Common Agile development methodologies include: Extreme Programming, Scrum,
Agile Modeling, Adaptive Software Development, Crystal, Lean, Agile Unified Process,
ICONIX and others. Although these methodologies vary, they all have at their core the

Agile Manifesto and allow the process to be customized for each individual project.

3.1- Core Practices of Agile Development

There are many general practices that are common to all or almost all agile development

methodologies. The most fundamental common feature is iterative development.

Iterative development means that only a few features are in development at any given
time and are finished before new features are implemented. This allows engineers to
focus on the task at hand rather than being spread thin working on many different issues
at the same time. It also makes sure that in large projects bottlenecks don’t form by, for
example, too much code coming out of development at the same time to be adequately

tested before the release is due.

Most modern software development relies on a code repository (Subversion, CodePlex,
SourceForge to name a few) to manage versioning and conflicts that arise if multiple
programmers are working on the same file at the same time. In agile development, a
programmer should never “check-in” code that is known to have defects. This way when
a module is checked out, it can be modified and not be affected by a fix that has not yet
been applied. If a defect is found in a current piece of code, the repository allows
programmers to roll back to earlier versions if need be. Any code in the repository is

considered ready to proceed from development to testing.

Refactoring is central to the Agile process. Refactoring is the re-working of existing,
working code to make it more efficient or a better reflection of the customer’s desires.
Knowing that refactoring is central also means that a programmer is open, as opposed to
resistant, to reworking parts and pieces of his code. Refactoring is particularly common
and useful in interface design. In the final analysis, most customers don’t differentiate

between the software and the user interface. Since the user interface is the only part of

the program they are aware of, it is the source of nearly all of their comments regarding

the software’s performance.

Much documentation is abandoned in agile programming in favor of working code, so it
is imperative that code is well documented, using intuitive names for classes, methods,
variables and constants. Automated tools (RDoc, JavaDoc, C#XML) are used whenever

possible for generating external documentation.

Test-driven development is prevalent in most agile methodologies. Test-driven
development mandates that programmers include unit tests in all the code that they
develop, and if applicable, interaction or functional tests as well. Generally speaking, it
is considered a good practice to write these tests before the code because when the code
passes the tests, it is done. This reinforces the idea of never checking broken software
into the repository. Writing tests first also helps clarify the requirements for a given
module. Tests can help eliminate logical errors in code and ensure that the code solves
the correct problem. In fact, many modern repository tools can automatically run these

tests at check-in so “broken code” never sneaks into the repository.

3.2- Popular Agile Methodologies Explained

As previously mentioned, many agile methodologies have popped up in the last five
years. Many of them are fully-specified, stand-alone development methodologies and
have components that were borrowed for Cowboy. Of these, Extreme Programming and
Scrum are two of the most widely used, according to the authors of their official

websites. [Schwaber, 96] [Wells]Two other methodologies, Agile Unified Process and

Getting Real, also contain methods that may be extrapolated for application to the

Cowboy model.

3.2.1 — Extreme Programming
Extreme Programming (XP) is approximately eight years old and was developed by Kent

Beck in conjunction with Ward Cunningham while they were both working for
DiamlerChrysler in the late 1990s. Together they had a very pleasant software
development process that was simple and very efficient. The ease of this development
resulted in Kent contemplating both what makes software development easy and what
makes it hard. Kent came to the conclusion that software developers can improve any
software project by focusing on communication, simplicity, feedback, and courage.
(Courage reminds us of Bach’s call for heroes.) From his experience with Ward and the

success of their project at DiamlerChrysler XP was born.

XP is designed to work best with two to twelve developers. They work in teams while
writing production code, one writing with the other looking over his/her shoulder,
switching off periodically. This is called pair-programming and has been shown to
increase the quality of the code generated, the abilities of the developers involved, and
the speed at which working code is produced. A hands-on and respectful management
layer is very important, as are dedicated testers, and the participation of a customer who
is available at all times to answer questions and give feedback. All participants typically
work in proximity with each other with many posters (or other visual aids) tracking

different metrics outlining the current status of the project. Each day starts with all team

10

members standing in a circle for a short stand-up meeting where problems, solutions and
each sub-team’s focus is discussed. This stand-up format encourages all the participants

to remain focused and helps keeps the meetings short.

An XP project starts with the collection of user stories from the project stakeholders
(customer or stand-in for the customer). “User stories capture high-level requirements,
including behavioral requirements, business rules, constraints, and technical
requirements.” [Ambler, 02] User stories should be unambiguous, clearly indicating
which category of user is trying to perform which task, and be small enough to be
considered atomic to the developers. XP suggests that if a user story reveals a
particularly challenging or new problem, “spike solutions” should be created to
investigate potential approaches to a solution. Spike solutions are simple, throwaway
programs developed to give experience to the programmers so they aren’t experimenting
while developing the final application. User stories are also used to create the acceptance
tests that are applied to the project to find bugs, which create new tasks, before being

submitted to the customer.

Projects are broken down into a series of small releases, each one having been fully tested
and approved by the customer. Each release consists of many iterations in which
individual features are added to the system, bugs are fixed, and existing, working code
may be refactored. These small steps inside iterations are referred to as tasks. Features
and functionality are only added at the specific request of the customer, and developers

should never add extra functionality that isn’t absolutely required by these requests.

11

“Only 10% of that extra stuff will ever get used, so you are wasting 90% of your time.”
[Wells] Pairs of programmers may complete many tasks each day, making sure that each
new feature or object added passes the unit tests they also develop. Each task is worked
on by only one pair of programmers at a time. Assuming the new code passes all the unit
tests, the code may be checked into the repository and considered complete and ready for

the testing department. [Wells]

In the realm of design, the user stories are used to create Class, Responsibilities and
Collaboration (CRC) cards which are used to model the design of the system. Individual
cards are used to represent objects and are developed through team-based discussion. A
system metaphor and glossary should be adopted to keep the team focused by
standardizing the naming of classes and methods. Simplicity should be the deciding
factor when negotiating on options for how to model or implement a feature. XP

advocates always doing the simplest thing that can possibly work. [Wells]

3.2.2 — Agile Unified Process
The Agile Unified Process (AUP) was developed by Scott Ambler as a simplified, agile

version of IBM’s Rational Unified Process (RUP). One of the major simplifications from
RUP to AUP is focusing less effort and manpower on the creation and maintenance of
models and documentation, instead striving to make them “just barely good enough.”
Also, requirements management is designed to deal with changing, new and removed
requirements as any agile development process should do. AUP as a methodology also

uses many agile techniques to make a very large and complete agile toolkit including Test

12

Driven Development (TDD), Agile Model Driven Development (AMDD), Agile change

management, and database refactoring. [Ambler, 06]

Ambler outlines four phases of the Agile Unified Process as follows:

(0]

Inception: Defines the initial scope, potential architecture, funding, and

stakeholder acceptance for the project.

(0]

Elaboration: Proves the architecture is feasible and well designed.
o Construction: Incremental building of working software.

o Transition: Validate the final system and deploy it to a production environment.

Compared to XP, AUP requires much more up-front work before coding begins. The
construction phase consists of many iterations that typically end in development releases.
Development releases initially lead to production releases. Development releases are
purely internal while the production releases are at least conceptually deployable to a
production environment. Each development release is stored in what is termed a “staging
area,” a repository capable of associating notes with bits of code. These notes specify the
state of the modules in the repository, for example to denote what works and what does

not or what remains to be done to complete a given module. [Ambler, 06]

Managers of Agile Unified Process driven projects must adopt some basic principles to

be successful:

13

Your staff knows what they are doing. Allow your staff the freedom to do their

job and simply help with high-level guidance and training if needed.

* Simplicity. Resist the temptation to specify requirements, models and other

artifacts in anything other than a few pages.

* Agility. AUP was designed with the Agile Manifesto in mind.

* Focus on high-value activities. Make sure that developers are developing
features that are known to be of high-value to the customer/stakeholder and are
not distracted by things they think are “neat” or things they (the developers)

think add value.

* Tool independence. Use any tools you are comfortable with and meet your
needs for any given project. Consider, however, using the simplest available
tools (whiteboards, sticky notes, index cards, etc.) or open source tools over

complex or high-cost tools.

* Tailor AUP to meet your project’s needs. Parts and pieces of AUP can be

adjusted or removed to suit your particular needs. [Ambler, 06]

3.2.3 — Scrum

Scrum was initially conceived as a new way to handle manufacturing product
development in 1986, and later elaborated upon in 1995 by Ikujiro Nonaka and Hirotaka

Takeuchi. Ken Schwaber of Advanced Development Methods, based on research in

14

process theory performed while working with DuPont, formulated a formal definition for
Scrum as applied to software development in 1996. Scrum is not a stand alone
development methodology; rather it is meant to be an agile “wrapper” for existing
engineering processes. It manages and controls development work incrementally (in
bursts of work called “sprints”), improves communication, removes hurdles to

development, all in an environment with rapidly changing requirements. [Schwaber, 06]

Once Scrum teams are formed, a Scrum Master is appointed, “who conducts the Scrum
meetings, empirically measures progress, makes decisions, and gets impediments out of
the way of slowing or stopping work.” [Schwaber, 06] Although not technically a
member of management, the Scrum Master leads a daily meeting in which he or she asks
team members what they did since the last Scrum meeting, what got in their way, and
what they are planning on doing before the next Scrum meeting. Decisions about
features, implementation and design issues are made by the Scrum Master who also
develops the initial backlog. A backlog is a prioritized list of features, bug fixes, and

system improvements.

Scrum relies heavily on a backlog of all work that needs to be done to complete the
project. Backlogs contain immediate needs that are well-defined as well as features to be
implemented in the future that may not be clearly understood. A single team member is
appointed to prioritize the items on the backlog, and the team will work together to
decide what features will be implemented in the next sprint. A sprint is a single iteration

with a fixed length, usually between two weeks and one month. The features assigned to

15

a given sprint are also prioritized so that if features need to be cut because of time or cost

concerns, it is clear which ones have lower priority. [Schwaber, 06]

As mentioned previously, there is a daily Scrum meeting. It is held in the same place and
time every day to avoid confusion. It is limited to 30 minutes and encompasses only the
Scrum Master asking the team members the three questions above. Any other issues that
arise and require discussion will be handled at later single-issue meetings with only the
interested parties attending. This consistency of meeting place, time and format allows
developers to get into a comfortable “groove,” allowing them to be more productive, with
an appropriate amount of supervision and support to take care of issues and impediments

that may arise. [Schwaber, 06]

3.2.4 — Getting Real
Getting Real (Real) was developed by 37signals in Chicago, IL. It is a “smaller, faster,

better way to build software.” [37signals] This methodology focuses primarily on
developing web applications, but many of the ideas it encompasses can be applied to
other categories of software design. The primary philosophy of 37signals is that software
is too complex and offers too many features. Their products are very simple with a
limited number of features that are very easy to use and extremely simple to understand.
Help files and tutorials are not required when using these applications because the

applications are self-explanatory and elegant.

Real begins with user interface design. The user interface is the only part of the system

that users will ever see, so Real suggests getting it right and building the back end around

16

the working and customer-approved front end. Real advocates that formal specifications
are an illusion and producing anything that simply represents reality should be avoided in

favor of producing real software. [37signals]

Real encourages designers and programmers to embrace constraints. No project ever has
sufficient resources (people, money, time, etc.), so accept what you have to work with
and find creative solutions to problems. Working within constraints breeds focus and
innovation. “Constraints are often advantages in disguise. Forget about venture capital,

long release cycles, and quick hires. Instead, work with what you have.” [37signals]

Focusing on the big idea of a project allows Real to focus on development and delay
many decisions until they absolutely have to be made. Specifically, working from large
to small problems ensures that user interfaces have necessary components and features in
place while allowing time for small user interface (UI) tweaks and small corrections to

the functionality once the “heavy lifting” is done. [37signals]

With respect to feature selection, Real advises taking your initial product and cutting it in
half. Focus only on what is truly essential, the absolute core of your application; get that
working and then add functionality to the solid foundation that you have built. Real says
that the alternative to building half a product is building a “half-assed” product. When
the stakeholder is interested in adding features to the system, the designers’ default

answer should be “no.” This is a difficult concept at first but essential to develop a

17

product that does exactly what the system requires and does not include many useless

features. [37signals]

All these ideas and nuggets of advice are incorporated using a straightforward process.
The Real software development process is not as rigid as many other methodologies, but
clearly outlines how to manage projects. First do everything in your power to produce
running software quickly. Running software builds momentum and builds the confidence
of the team. Second, work in iterations and deploy non-perfected software as soon as it is
running. Getting real-time feedback from actual end users will lead to better decisions
and reveal errors as the project matures. Iterations also allow developers the freedom to
not get it working perfectly on the first try. Third, determine what the big questions are
and how these ideas will be implemented. Start with brainstorming, move to sketches on
paper or white-boards, and create a working UI prototype for each feature. Then after
iterating the UI prototype until it is acceptable, add the application code to the back end.
Fourth, avoid offering preferences to the end user. Go ahead and make decisions for the
user rather than offering choices unless it is absolutely necessary. Fifth, become
comfortable with the word “done” and accustomed to moving on to the next challenge.
Don’t worry about making a bad decision or leaving something unimplemented because
going back and making a change shouldn’t be a big deal. Sixth, test your application in
the real world with real users. This is the fastest way to get a lot of feedback very
quickly. Obviously there are many software projects where this approach would not be

acceptable, but it is invaluable when your project can allow for it. Lastly, don’t plan

18

large increments that will require long periods of time. For example, if a portion of a

project will take ten weeks, break it into ten one-week projects that are easier to manage.

4- Cowboy — How Agile Practices can help

Programmers working by themselves do not typically adopt formal methodologies, but
rather bang away at a solution until they feel they have finished. Designed to be
lightweight, Cowboy borrows heavily from the core agile practices as well from XP,
Scrum, AUP and Real. It is an attempt to integrate the best of those practices and creates
a process that allows programmers to stay focused while creating software customers
want, on time and inside budget constraints. No specific metrics were utilized to select
the features included and excluded from Cowboy; rather components that could be
applied by a solo programmer and that seemed to mesh and complement each other were
identified. The goal is a process easy enough to use and helpful enough to be a more
attractive option for programmers working alone than using nothing at all. Asa
methodology, it is divided into four major sections: overall practices, customer

interaction and requirements specification, iteration management, and deployment.

4.1- Core Elements

Certain elements of Cowboy are simply good practices and rules of thumb that a
developer should keep in mind while creating software solo. Borrowing from the core
agile practices, Cowboy is iterative with each cycle adding features and fixing bugs of the
previous cycles. Each cycle should have specific requirements that will be implemented

during the cycle.

19

XP-recommended use of spike solutions, writing small pieces of code to investigate
unknown or rough coding terrain, is applicable to this methodology as well. The
potential pitfall, however, is using a spike solution as part of the final product. Spike

solutions, like all prototypes, should be discarded when final development starts.

Another good practice is keeping a Scrum-like backlog of work to be done for the entire
project, with a detailed sub-list for the current iteration. The backlog is really a to-do list
with items crossed off when finished and new items added when issues (including bugs)

arise.

Finally, Cowboy suggests you keep your artifacts simple and just barely good enough, as
suggested by AUP. The artifacts should encapsulate the core ideas and system
architecture, but are subject to change (or even elimination) as the requirements change,

so not much time should be lost perfecting them.

4.2- Customer Relationship

Since agile practices discourage spending a lot of time solidifying requirements before
the project begins, Cowboy relies heavily on having a customer (or at least someone
knowledgeable to represent the customer’s interests) available to discuss and specify
requirements as they arise during development. The customer’s input should weigh
heavily in determining the order in which features are added to the system. The user
stories and glossary that are created in XP to gather requirements are also good tools for
the solo programmer. Customers can understand the concept of user stories and relay

how specific users will use the system to accomplish tasks without having to understand

20

or think about the layers of code and design. A glossary is necessary to clarify what

words mean in the context of the project.

Dealing with customers frequently will require compromise and explanation of
constraints. Cowboy applies the Real methodology of customer interaction. Embracing
constraints like time, money, and experience (for example) and understanding the limits
in scope these constraints will enforce before meeting with the customer can help keep
the project smaller and more manageable. Also, the developer is encouraged to make his
default answer “no” when customers ask for features to be added to the system.
Customers may get excited and ask for more and more small features that will, in reality,
hardly be used in the final product and detract valuable time from the development of
more important features. If customers have to fight to get a feature added, it makes them
think more deeply about how it will be used and why it should be included, making it a
better feature if it is accepted. Developers should also try to offer the customer as few
preference choices as possible. This holds true in requirements gathering as well as in the
final product. The developer should feel empowered to make decisions, and, if this
results in the occasional wrong decision from the viewpoint of the customer, be

comfortable with refactoring to make the necessary changes.

4.3- Iterations

During every iteration, as code is written in Cowboy, the following guidelines should be
followed. A cowboy should try to restrict the maximum iteration length to no more than

two weeks. Tackling the large problems first and moving on to smaller issues is

21

conceptually described by Real and would also imply that spike solutions should be
developed at the beginning of the project. Refactoring code written in this and previous
cycles should be an ongoing task and something that the developer does not hesitate to
do. As code is written, sufficiently detailed comments should be included and updated
during refactoring. Comments should be in a format that allows a tool such as JavaDoc
or RDoc to automatically extract and create formal documentation for the code. The
developer should keep in mind that these documents will largely replace the formal
requirements documents and artifacts of a conventional software development

methodology.

4.4- Code
Code should be kept organized and preferably in a code repository that is capable of

recording notes in keeping with AUP’s requirement of a staging area. If this is not a
practical or desirable process for the developer, then at the very least, backups should be
maintained, and comments at the top of each file should indicate what known bugs exist

in the file.

4.5- Test Driven Development

Test-driven development is core to agile practices and should be practiced in Cowboy.
Unit and functional tests should be developed up front and run often to ensure the quality
of the current code base. This attention to testing while developing facilitates two
components of Real that are central to Cowboy. The developer should focus on building

and deploying non-perfected software as quickly as possible. Running software builds

22

momentum and makes it easier to get feedback from your customer/stakeholder on what
direction to take next. If working on a project that may be deployed before it is finished
(especially if web-based), a lone programmer can take advantage of his/her connections
in the software development community for additional feedback and end-user testing in a

real-world environment.

4.6- Outline of the Cowboy methodology

The following outline describes all of the basic components of the Cowboy methodology.
As with any agile methodology, this is a template that can be modified to work for a

specific project.

I. Customer / Developer Relationship

a. If the customer is not available for meetings, then designate a customer
proxy to stand in at meetings

b. Use a questionnaire to ensure that the customer is comfortable and happy
with the progress on the project and the meeting format

c. Use tools such as e-mail, instant messaging and phone calls for the
developer to ask questions of the customer during development

II. Meetings
a. Conduct an initial design meeting to determine the initial features

i. Provide a comfortable room with sufficient table and whiteboard
space

ii. Define overall goals for different classes of users

iii. Define an initial, prioritized task list for the developer
iv. Develop a glossary for possibly ambiguous terms

v. Design a preliminary user interface

b. Build-review meetings

ii.

1ii.

23

Begin meetings by providing the customer with a walk-through
testing script of the newest release

The developer should take notes on the customer’s oral comments
and observations on problems the customer encounters to identify
refactoring tasks

Customer and developer revise goal list

iv. Customer and developer revise and re-prioritize task list
v. Customer and developer add to or edit glossary as needed
vi. Customer and developer discuss user interface changes
vii. Customer responds to questionnaire
II1. Artifacts
a. Goal list
i. Goals should be kept as high level as possible, identifying needs of
the end user that the system will satisfy
ii. One, or preferably more, tasks will be derived from each goal
iii. Categorize goals according to end-user group
iv. Each individual goal should be a phrased as a complete sentence
and use verbs like “allow, provide, enable”
b. Task list
i. Tasks are the actions the system allows an end-user to perform
ii. Each task is prefaced with the phrase, “A (user class) should be
able to...”
iii. Group tasks into categories based on the goal or major feature they
satisfy or support
c. Glossary

1.

ii.

iii.

Create entries in the glossary to define both important terms and
terms that may be interpreted incorrectly

Ensure that the customer and developer both agree that the
definition is clear, concise, and correct within the context of the
project

Keep glossary handy for all meetings

24

d. Code

i. Use Integrated Development Environment (IDE) , preferably with
code completion support

ii. Follow conventions for formatting of code to make code consistent

iii. Choose meaningful, and if necessary verbose, names for classes,
methods, and variables to improve readability

iv. Comment classes and methods appropriately
v. Use unit testing to verify each class’s behavior

vi. Maintain a to-do list that mirrors the task list, including refactoring
tasks and user interface changes

4.7- Cowboy, Ready to Test

While not a finely-honed software development methodology, Cowboy is specified
clearly enough for a lone programmer to use. Section five outlines a specific test

application of Cowboy to a real software development project.

5- Plans for the Application of Cowboy

As my personal interest in agile development grew, and as I began incorporating agile
fundamentals into my school and work projects, I began to search for a large project to
which I could apply this solo programmer methodology. In the fall of 2005 I began
meeting with Dr. Pam Taylor of the Virginia Commonwealth University Art Education
Department to discuss a software product she wanted to have developed. In the Spring of
2006 I realized that Dr. Taylor’s VLP project would be an excellent vehicle for testing

the core concepts of Cowboy.

25

5.1- Project Overview

Dr. Pam Taylor wanted a prototype to demonstrate her concept of a “Virtual Learning
Portfolio” (VLP). The underlying goal of this project was to develop a working
prototype system that would allow Dr. Taylor to apply for patents of her concepts of
interactive learning using hyper-linking technology. VLP is envisioned as an interactive,
online tool that supports art education in grades K-12. Students create portfolios by
uploading digital versions of art, usually their own, and linking these to other items in the
portfolio or to items on the web. Teachers supervise students’ portfolios as they grow
over a given semester or school year, adding comments and concretely assessing (via
rubrics) the media and links to internal and external resources added by the students.
After this prototype is developed, the end goal is to create a system that would be able to
also track Standards of Learning for Art Education as well as have a cross-platform,
three-dimensional or “Virtual Reality” interface to replace the web-based interface being

implemented for this project.

5.2- Customer/Programmer Relationship

Katie Helms, one of Dr. Taylor’s Graduate Assistants, agreed to act as proxy for the
customer, Dr. Taylor. Dr. Taylor’s schedule was not open enough to be involved with
the meetings, but Ms. Helms felt comfortable in representing the wishes of Dr. Taylor. I
proposed to work with two-week build cycles, and Ms. Helms agreed. We planned to

meet at the end of each build cycle to review the project and plan the next phase.

26

5.3- Meetings

Meetings were designed to be as short as possible with very clear goals that included
making sure that Ms. Helms felt comfortable with both the project’s progress and her role
in the project. Before each meeting the developer prepared and printed a written agenda
and hard copies of all artifacts for both the customer and developer. Designing software
can be a daunting process, even for trained professionals, so much care was taken to
make sure feelings weren’t hurt and that customer and developer were both happy and

productive during the meetings.

All meetings were to be held in a room with plenty of table space and a whiteboard. The
initial design meeting was organized into four parts. First, the high-level goals of the
final product were defined. These goals were written with verbs like “allow, provide, and
enable” to create active and precise sentences. Second, a task list was derived using the
goals as jumping-off points. For this project, the list was divided into a list for student
tasks and another for teacher tasks. Tasks are written in subject-verb-object sentences
where each started with the fragment, “Using the system, a student/teacher should be able
to...” As potentially confusing terminology was discovered, notes were made for a
glossary of terms that will be created with definitions agreed upon by Ms. Helms and me.
Third, the task list was prioritized into things to do first, second and third. Last, a
preliminary user interface was sketched using the white board so development could

begin.

27

Subsequent meetings began with usability tests. Ms. Helms followed a testing script to
perform tasks inside the current system while I took notes. She was asked to speak up
when she encountered bugs or anything that she didn’t understand. After completing the
script, she was free to “play” with the software and demonstrate changes she wanted or
new features that should be added. Once this testing and review process was over, I had
created a list of refactoring tasks needed by the system. These fixes were categorized as
bugs, unexpected behavior, missing behavior, and user interface design issues. Next the
goal and task list artifacts were reviewed, and items that were mutually decided to be
100% complete were crossed off. Individual goals and tasks were re-worded, added or
deleted at this time. The remaining tasks were prioritized again with the understanding

that the refactoring tasks would be completed first.

A questionnaire was given to Ms. Helms at the end of each meeting to track her concerns,
observations and feelings about the project, and attempt to collect useful data about
programmer-customer interaction. The questionnaire was comprised of questions that
required ratings on a scale of one to five and short answer questions. An example of

these questionnaires can be found in Appendix C.

5.4- Artifacts

While the code was being written, the only required artifacts were the goal and task lists
and the code. The goal list and task list were stored electronically and printed at each
meeting. Changes made to the hard copy during meetings were also made in the

electronic version and saved as a new version.

28

The code was to follow certain coding guidelines. Class, method and variable names
were to be self explanatory and unambiguous. Ruby on Rails formatting standards,
including capitalization, scope, and indentation standards, were also adopted. Every
source file, method and variable was to be well commented in a format that supports an
automated comment tool, in this case RDoc. Unit and interaction testing were to be built
in and run before each iteration was deemed complete. A statistics gathering program was

to be used to track the lines of program, test and comment code at each build.

5.5- Cowboy Summary as Applied to VLP
By slightly modifying the previously presented outline, VLP was implemented using the

following plan.

I. Customer / Developer Relationship

a. Use a proxy for the customer

b. Use questionnaire to ensure that the customer’s proxy is comfortable and
happy with progress

c. Use tools like e-mail, instant messaging and phone calls for the developer
to ask questions of the customer’s proxy during development

II. Meetings
a. Initial design meeting

i. Provide comfortable room with sufficient table and whiteboard
space

ii. Define overall goals for different classes of users
iii. Define initial, prioritized task list for developer
iv. Develop glossary for possibly ambiguous terms

v. Design preliminary user interface

b. Build-review meetings

ii.

1ii.

iv.

Vi.

Vii.

I11. Artifacts

29

Customer’s proxy walks through software with a testing script,
articulating concerns encountered

Developer takes notes on customer’s comments to build
refactoring tasks

Revise goal list

Revise and re-prioritize task list
Add to or edit glossary as needed
Discuss user interface changes

Customer’s proxy responds to questionnaire

a. Goal list

1.

il.
iii.

1v.

Goals should be kept as high level as possible, identifying needs of
the end user that the system will satisfy

One, or preferably more, tasks will be derived from each goal
Categorize goals according to end-user group

Each individual goal should be a phrased as a complete sentence
and use verbs like “allow, provide, enable”

b. Task list

i

il.

iii.

Tasks are the actions the system allows an end-user to perform

Each task is prefaced with the phrase, “A (teacher or student)
should be able to...”

Group tasks into categories based on the goal or major feature they
satisfy or support

c. Glossary

1.

ii.

iii.

d. Code

Create entries in the glossary to define both important terms and
terms that may be interpreted incorrectly

Ensure that the customer and developer both agree that the
definition is clear, concise, and correct within the context of the
project

Keep glossary handy for all meetings

30

1. Use Integrated Development Environment (IDE) , preferably with
code completion support

ii. Follow conventions for formatting of code to make code consistent

iii. Choose meaningful, and if necessary verbose, names for classes,
methods, and variables to improve readability

iv. Comment classes and methods appropriately
v. Use unit testing to verify object’s behavior

vi. Maintain to-do list that mirrors the task list, including refactoring
tasks and user interface changes

5.6- Summary
The goals of being lightweight and simple appeared to be well outlined in the project

plan. Both the customer’s proxy and developer agreed at the first development meeting
that the meeting schedules, artifacts, and questionnaires seemed reasonable and easy to

stay on top of.

6- Final Product Analysis

Overall, this project was highly successful. The prototype met almost every goal and was
developed and deployed on time. A couple of the “nice to have” features were not
implemented, but their absence should not affect the patent application process, so

customer was satisfied.

6.1- Customer's Impression of the Final Prototype

Dr. Taylor was periodically updated on the status of the project, and she saw an informal
demonstration shortly before the final delivery date. At this time, she made it clear that

she “didn’t see the metaphor” the system was based on, but Ms. Helms helped to

31

communicate the similarities between VLP and the hyper-linking software Dr. Taylor
was used to. Ms. Helms’s explanations seemed to clear things up significantly.
However, special care was taken while developing a final walkthrough script to clearly

describe the task the user was trying to do.

After the system was deployed onto a live server, Dr. Taylor was provided with a
compréhensive walkthrough script to demonstrate the functionality of the software.
Overall, Dr. Taylor was pleased with the prototype. As an art educator, she was unhappy
about the look of the interface, but this was not surprising. She was informed before
development began that graphic design and the ability to create great-looking web pages
were not strengths that this developer possessed. As far as functionality was concerned,
Taylor was pleased with what was supported and only saw a couple of features missing.
However, she did express concerns about how well the application would scale for both

teachers and students when the portfolios contained a lot of data.

Dr. Taylor was also concerned with the “speak” of the user interface. She felt that the
language used to describe the metaphor could have been clearer and more focused on
education. Some specific ideas were expressed to help resolve this issue, but further
work with Dr. Taylor, Ms. Helms and the developer will be needed to adjust the language

used in the graphical interface to correct these issues.

32

6.2- Developer’s Impression of the Final Prototype
Overall I was very pleased with the quality and functionality of the final prototype that

was delivered. I was relatively new to Ruby on Rails; also this was one of the largest

projects I had ever worked on and the largest I had worked on by myself as a cowboy.

Midway through the project, the code was migrated from a Windows platform using
RadRails (a special, rather buggy, build of Eclipse) to Mac OS X using TextMate as an
IDE. Ruby on Rails (Rails) was originally developed on a Macintosh, and TextMate has
many helpful functions built into it (by the author of Rails) that made development much
easier. The Macintosh operating system proved to be a lot friendlier for Rails

development than Windows.

I agreed with Dr. Taylor’s final assessment of how the VLP prototype looks. It is plain
and a very simple. However, I focused on creating an easy-to-use website with the
desired functionality, leaving the design of the final site to a graphic designer to be hired
later. The flexibility to allow after-the-fact changes to the user interface was achieved
using Cascading Style Sheets (CSS). CSS allows the separation of the format of the
rendered pages from the content. Separating the content and formatting promotes agility
by making future changes to the interface easier. A designer can polish the user interface

by editing the CSS without requiring many changes to the content-generating code.

6.4 Source Code Analysis

The source code looks very clean and well formatted. Both IDEs used in the authoring

supported tabbed browsing of source files, indentation assistance, code completion, and

33

syntax highlighting. This support from the authoring tool made it much easier to produce
clean code. Ruby on Rails encourages keeping class names simple, and the developer
strove to name methods very clearly. For example,

Cluster.resources_for student (student) returns an array of resources from
the cluster for a given student. Student.unseen comments returns all the comments

for a student that have not been displayed previously.

Statistical tools were not used to analyze the code during development because very few
comments ended up being required, and unit testing was not completed. (See section 7.2

for further discussion of this point)

7- Process Analysis

This project was an experiment that tested the hypothesis that a proposed development
methodology would work well. By adhering to the process much was learned about what
was good and what didn’t work well with the application of Cowboy to the development

of VLP.

7.1- Cowboy’s Successes
Overall, the developer, final customer and her proxy thought that the final product

produced using the Cowboy methodology was a success. The process itself also proved

to be successful.

7.1.1- Customer/Developer Relationship
Ms. Helms and I got along very well for the four months we worked together. We felt

very comfortable with each other, and meetings went very smoothly. Many e-mails and

34

phone messages were sent between meetings to clear up my questions or to communicate

thoughts Ms. Helms had that had not occurred to her during the meetings.

7.1.2 - Meetings

Meetings ran very smoothly. Having hard copies of all artifacts and an agenda prepared
before they started allowed meetings to stay on task and be as short as possible. During
these meetings, there was much compromise between the developer and the customer’s
proxy. The order of feature development, the actual features to be developed during the
next iteration and changes to the requirements all had to be decided upon. Ms. Helms
and I had a very professional and friendly rapport, and worked very well together even
when compromises were necessary. Cowboy’s use of a meeting agenda and customer

questionnaire would help keep this relationship on track if personality conflicts did exist.

After the first couple of meetings schedule conflicts made it difficult for meetings to be
held on campus, so subsequent meetings were held in my living room. This was not seen
to be a problem, since the software was working quite well, and the whiteboard was no

longer necessary to help flesh out ideas.

7.1.3- Testing Scripts
The testing scripts described tasks for Ms. Helms to perform, rather than telling her

exactly what buttons to press and what to type. This tested the intuitiveness of the user
interface. I took notes on my observation of problems and Ms. Helms’ comments during
the tests. Conversation about the software was kept to a minimum during the tests, and

issues raised were discussed after the testing was completed.

35

7.1.4- Artifacts

The goal and task lists proved to be a very handy form of communication between
developer and customer. One significant strength was that both parties could enforce the

standards that had been set forth at the beginning of the project.

At the conclusion of each meeting, I would update the artifacts to reflect the decisions
reached and would then update a to-do list housed in the source code for quick access. A
to-do list was added to the artifacts because I found it to be a great aid while writing
code. This list of bug fixes, refactoring tasks, features to add, and user interface tweaks
was very handy since it was only a single click away while development was going on. It
could also be added to when bugs were discovered while authoring without cluttering up

the artifacts themselves.

7.1.5- Customer Questionnaires

The customer questionnaires were an easy and reliable tool in reassuring the developer
that the customer felt comfortable and that she understood what was being accomplished.
Ms. Helms was encouraged to be as honest and open as possible because any constructive
criticism would be used to improve the process. Information obtained from the
questionnaires ranged from user interface issues, program bugs and how Ms. Helms was

feeling about the process as a whole.

Customer questionnaires were incorporated into Cowboy primarily so that the developer
can be assured that the customer is comfortable and regards the progress being made as

satisfactory. The questionnaires received during this experiment did just that: reassure on

36

paper that the developer was doing a good job and that a happy, comfortable customer

appreciated his efforts.

7.1.6- Iterative Builds

Adding prioritized features in successive build cycles accommodated the developer and
customer very well. Each iteration met the goal of developing all of the features assigned
to it. The developer didn’t feel overwhelmed, and it was easy to ask questions of the
customer’s proxy in the middle of a development cycle since Ms. Helms could easily

remember what features were being worked on during that cycle.

7.2- Cowboy Shortcomings in VLP Project
Despite all interested parties being happy with the final result, not all aspects of the VLP

prototype project worked out exactly as planned. Specific issues are outlined below, and

the limitations that led to these shortcomings are investigated in Section 7.3.

7.2.1- Source Code

The areas where this application of Cowboy deviated from the initial plan were
manifested in the lack of comments and unit testing. Although the source code is not
barren of comments, commenting classes and methods whose functions were very
obvious from their carefully-chosen names never became a priority. Code written in
Ruby on Rails normally relies on many very short functions. The longest method in VLP
is about twenty lines and did not, in the developer’s opinion, require a comment to
describe it. The html documentation produced by RDoc lists the methods of a class and

the values passed into the methods. Every Ruby method returns a value, so return type is

37

not automatically documented. The name of each method should describe the value that
is expected to be returned. The following screen-capture is representative of the
documentation RDoc generates for a class with no comments and serves as an example of

why I decided adding additional comments would have not been particularly helpful.

As seen in Appendix G, the in_course? method returns a Boolean value which
corresponds to whether or not a student is in a given course. The other three methods
return arrays, so the method names imply plurality. The arrays contain types indicated by
the name; for example, unseen comments () returns an array of comment objects that

have not been seen by the student.

There are three reasons that unit testing was not included. First, the developer did not
have any understanding of or experience with building unit tests. Second, unit testing
finds rarely-encountered, potentially lingering problems that may not appear until later in
development or even after system deployment. Since VLP was developed as a prototype,
rarely-encountered bugs are acceptable, and the primary functionality of the system has
been proven through end-user testing. In a production system, unit testing would help
assure that the quality of the system was being maintained as development moved
forward. A third reason relates to the fact that unit testing is critical in allowing parallel
development of modules in a team development environment. Obviously this reason for

performing unit tests does not exist for the cowboy programmer.

38

Since comments and testing code did not become a major part of the VLP system,

tracking the ratio of application, testing and commented lines of code was not performed.

7.2.2- Missing Features

There were two classes of features identified by the customer as missing from the final
VLP prototype: features from the initial goal list that were not implemented and features
revealed in Dr. Taylor’s final comments that were unknown to the developer and
customer’s proxy. Neither the proxy nor the developer considered the features from the
initial goal list that were not implemented a priority during the development process.
Adding them on to the final prototype or incorporating them into the next incarnation of
VLP will not require major changes in the system and their absence will not affect the

patentability of the ideas illustrated by the prototype

The missing features previously unknown to the developer and customer’s proxy were
larger in scope and would require much more development effort to implement. As
stated previously, the end goal of a final working VLP incorporates a three-dimensional
interface. Many of the concepts and metaphors that a two-dimensional version of this
VLP implementation is missing could, in Dr. Taylor’s opinion, be illustrated by adding
graphical elements and extendibility that weren’t seen as priorities by the proxy or

developer for the prototype.

7.3- Limitations

The primary limitation of this project was that both the developer and customer worked

on this project part-time. Furthermore, both were working two jobs and working on other

39

major projects. The scheduling limitations of Dr. Taylor also prevented her from taking a
more active role. Better planning and better communication with Dr. Taylor could have

led to the incorporation of the missing features.

Another side effect of developing VLP part-time was the length of the build cycles.
Although the amount of work planned and completed did not increase, the number of
weeks between meetings averaged about three to four instead of two. Also, the developer
left the country for a week and a half in the middle of the project, cutting out almost all of
the time allocated for an entire build cycle. These factors did not appear to have any
serious side effects, although it is possible that the two remaining initial features,
standards of learning and teacher templates, might have been implemented if two week

build cycles had been possible.

7.4- Having a Customer Proxy

In this project the customer was represented by a proxy who worked with the developer
to communicate the project requirements. It is very likely that customer proxies would
also be used frequently in real-world applications of Cowboy. Customers are very likely
to be too busy to spend too much time in development meetings. It is also possible that
there will be many end users and stakeholders, so a single customer or proxy may

represent many interests.

Ms. Helms worked out very well as a customer proxy. However, it would be best if the
actual customer or stakeholder could have performed the role she assumed for this

project. Many decisions had to made in development meetings that had to be approved

40

after the fact by Dr. Taylor. Even more serious, though, were omissions that were not
discovered until the end of the project because Ms. Helms was entirely unaware of Dr.
Taylor’s desires and expectations. A solution may have been to periodically schedule
meetings with the developer, proxy and customer all attending. The customer could walk
through the software with a testing script just as the proxy did. This would also be an
opportunity for the proxy to verify that her impressions of the customer’s requirements

were on track.

8- Cowboy 3.0 - How to Improve the Process

Cowboy was a good idea. While teams develop most software, solo development does
occur and should also follow an appropriate methodology. Based on my experience in
applying this methodology in the VLP trial, I would propose several specific

improvements.

8.1- Problems in the Application of Cowboy to the VLP Project
As outlined previously, the development of the VLP prototype was successful. Not

unexpectedly, the Cowboy methodology did have some limitations. Some of these
limitations are restricted to this particular project, while others suggest areas of

improvement in the methodology itself.

8.1.1- Customer / Developer Relationship

One of the more significant issues with the VLP project was the lack of meetings with the
final customer. Although the proxy concept worked out well, the input of the actual

customer at every second or third meeting could have significantly altered some of the

41

decisions made by the developer and proxy in her absence. In general this is a good
practice that should be adopted in later adaptations of Cowboy. The input of the end

customer can give significant insight and help keep the project on track.

8.1.2- Time Commitments

Determining set weekly time commitments or even a daily schedule of work for the
developer to follow would have increased productivity and might have kept iteration
lengths consistent. During this process, the developer worked on VLP when time was
available, and in retrospect, this was a poor plan. The shortcomings of the code, not
having class-level comments or automated testing features, and missing features could be
attributed to the lack of a disciplined schedule that allowed time for these activities to

occur.

Cowboy could possibly benefit from the adoption of time management or time
commitments as part of the agreement between the developer and the customer. While it
is possible that the issues that arose during this experiment may not always occur,
cowboys work without direct social pressure and may very well benefit from having

structured work schedules.

8.1.3- Test Driven Development
The VLP experiment did not incorporate Test Driven Development (TDD), a core part of

the Agile Manifesto. This element is core to any methodology claiming to be agile and
was left out of this particular project due to poor scheduling and the inexperience of the

developer with TDD and unit testing in general.

42

In future Cowboy trials, the developer should be knowledgeable about and schedule
adequate time for unit testing. TDD requires unit tests to be written at the class level
before the classes themselves are written, and Cowboy should take advantage of this.
Unit tests force a programmer to clearly understand the specific issues a class is being

written to solve and ensure that new code does not introduce new errors.

8.2- Additional Standards for Professional Adaptation

Research did not uncover any evidence of how programmers currently working alone
stay organized or if following a methodology is popular for these developers, but if

Cowboy is applied in a professional setting some additions would be desirable.

8.2.1- Code Repository

Code repositories are an invaluable tool of the professional software developer. In team
development settings, they are indispensable in facilitating parallel development of
software components by many developers working simultaneously. They also offer
advantages in maintaining version control and periodically making backups of the code
base, useful to the solo developer as well as team developers. Developers should
frequently check code into the repository, usually after implementing a feature.
Repositories allow a developer to “roll back” the code to a certain point if a large bug or
issue is discovered. Since checking in a version usually requires comments to be
associated with it, the developer is not burdened with having to remember which version

has which working feature. Artifacts such as goal and task lists can also be checked into

43

the repository, allowing the developer to recover historical copies of documents without

manually handling version control.

8.2.2- Contracts

Professional software developers, by definition, write software for money. This
inevitably requires a contract between developer and customer before work begins.
Cowboy, like all agile processes, doesn’t pretend to be able to set all requirements before
work begins. Customers, however, tend to be uncomfortable signing a contract that

doesn’t fully specify the work to be performed as well as the price and delivery date.

One solution is to have an iterative contract arrangement. This concept requires the
customer to sign off on a small, core set of features that may be developed quickly. This
initial iteration should be no longer than six to eight weeks. At the end of the iteration,
the customer has two choices: to continue, signing a contract for the next iteration, or
choose to take what has been done and walk away. This process has advantages for both
developer and customer. The developer can more accurately estimate the time and skills
required for future iterations and never has too many features in development at the same
time. The customer’s risk is significantly reduced and the customer is very aware of the

progress of the software. [Subramaniam]

9- Conclusion

Cowboy programmers write a lot of code in many applications. They come in all shapes

and sizes and have different levels of success. Despite the ubiquity of the solo developer,

44

little software engineering research has focused on practices appropriate for the solo

developer.

Before I developed and tried the Cowboy methodology I followed no formal
methodology at all. I would elicit requirements from customers at the beginning of a
project and then proceed to design and development. Input from the customer after the
initial requirements elicitation would be extremely limited. No concept of iterative
development was considered and artifacts like goal and task lists were never created or
maintained. In all, my previous efforts of creating software resulted in working products
that were satisfactory upon completion. However, the process used to create these
products was much more hectic than the application of Cowboy to the VLP project.
Production systems were often built directly on top of prototypes. This practice
compromised the understandability and maintainability of old projects because the code

was not always easy to understand.

The implementation of the VLP prototype, utilizing the Cowboy methodology was much
more organized and comfortable. Taking advantage of frequent customer meetings and
reviews provided constant feedback and adjustments to the project right after each section
of the code was written. Simple, well-maintained artifacts kept system requirements
orderly and easy for both customer and developer to understand. Despite the missing
features in the final product, what was developed was considered very successful.
Constant refactoring have made the code base very easy to read and maintain. While

there is room for improvement, this first experiment with Cowboy was largely successful.

Its success implies that adopting agile practices can increase the quality of the software

and overall success of the projects developed by cowboys. .

45

Appendix A: Sources Used
[37signals] 37signals. 2006. Getting Real, Chicago, IL: 37signals.

[Ambler, 02] Ambler, Scott. 2002. Agile Modeling, New York: John Wiley and Sons,
Inc.

[Ambler, 06] Ambler, Scott. 2006. “Agile Unified Process (AUP) Home Page,”
http://www.ambysoft.com/unifiedprocess/agileUP.html, accessed 31 Jul 2006,
Ambysoft, Inc.

[Bach, 95] Bach, James. Mar 1995. “Enough about process: what we need are heroes,’

IEEE Software, Volume 12, Issue 2, pp96-98.

46

[Bach, 99] Bach, James. Dec 1999. “What Software Reality is Really About” Computer,

Volume 32, Issue 12, pp148-149.

[Beck, 99] Beck, Kent. 1999. Extreme Programming Explained: Embrace Change.
Boston, MA, Addison-Wesley.

[Beck, 01] Beck, Kent. et all. 2001. Manifesto for Agile Software Development.
http://agilemanifesto.org, accessed 28 Jul 2006.

[Curtis] Curtis, Tex. Mar/Apr 2001. “So You Wanna Be a Cowboy?”” IEEE Software,
Volume 18, Issue 2, pp. 112, 110-111.

[Hodges] Hodges, A. 1983. Alan Turing: the Enigma. London: Burnett; New York:
Simon & Schuster.

[Mateosian] Mateosian, Richard. Feb 1996. "The road ahead." IEEE Micro, vol. 16,
no. 1, pp. 5-6,72.

[McBeen] McBreen, Pete. 2003. Questioning Extreme Programming. Boston, MA:
Addison-Wesley.

[McConnell] McConnell, Steven C. Nov/Dec 2001. “Raising Your Software
Consciousness.” IEEE Software, Volume 18, Issue 6, p7-9.

47

[Schwaber, 96] Schwaber, Ken. 1996. “Controlled Chaos: Living on the Edge,”
http://www.controlchaos.com, accessed 31 Jul 2006, Advanced Development
Methods, Inc.

[Schwaber, 06] Schwaber, Ken. 2006. “Scrum: it’s about common sense,”

http://www.controlchaos.com, accessed 31 Jul 2006, Advanced Development
Methods, Inc.

[Smialek] Smialek, Michal. 2005. “From User Stories to Code in One Day?” Extreme
Programming and Agile Processes in Software Engineering, Proceedings of the
6™ International XP Conference, Sheffield, UK, 18-23 Jun 2005, p38-47,
Heidelberg, Germany: Springer.

[Subramaniam] Subramaniam, Venkat. Andy Hunt. 2006. Practices of an Agile
Developer, Pragmatic Bookshelf, Raleigh, NC.

[Wells] Wells, Don. 2006. “Extreme Programming: A Gentile Introduction,”
http://www.extremeprogramming.org, accessed 31 Jul 06.

48

Appendix B: Artifacts
B-1: Representative Goal List

o

O O O O

O O O O O

Provide students an environment in which to build VLPs — a collection of
organized multi-media resources.

Allow student to link resources to other resources and/or external web documents.
Enable teachers to review student VLPs.

Provide teachers with the means to assess VLPs.

Make VLP accessible to a wide range of teacher/students by maximizing (and
focusing on) ease of use.

Allow students to associate tags with resources.

The system should be cross-platform and web-based.

There should be a way to align SOL requirements with tags.

Allow teachers to observe/identify themes in a VLP.

Allow teachers to create templates and place them into VLPs for a given course.

B-2: Representative Student Task List
Using VLP, STUDENT will be able to...

manage resources

o 1 by adding resources
o 1 uploading files

o 1 adding/editing title

o 1 comments

o 3icons

o 3 review archived VLP

linking
o 1 add/edit links from resource comment to other resource

o 1 click on icon or thumbnail and open resource file or URL in browser
o 3 link to archived VLP resource

tagging
o 2 add/remove tag to resource
o 2 see a list of their own tags
o 3 view a tag pool of all their tags
o 3 cluster their own tags

assessment

o 2 view comments by teacher for assignments
o 3 view assessment rubrics

clouds

o 3 have clouds

49

B-3: Representative Teacher Task List
Using VLP, TEACHER will be able to...

review student portfolios
o 2 review all student resources for each tag via couds, individual tags, groups of
tags, etc.

o 2 comment on individual resources
o 3 review archived VLP

tagging

o 3 assign global tags to all VLPs associated with a course
assessment

o 2 create rubrics and associate with a tag for the assignment

o 2 store and reuse rubrics

o 2 assess student performance on assignment using rubric
clouds

o 3 implement clouds
assignments

o 3 create templates

o 3 create rubrics
o bundle and deploy templates and rubrics as assignment to students in a course

50

51

B-4: Representative Glossary
Assignment — consists of a template, grading rubric and one assignment tag.

Assignment tag — a tag associated with a resource that corresponds to a particular
assignment. If placed there by the teacher on a template resource, neither the
resource nor tag may be removed by the student.

Cluster- a group of tags that all have the same “parent” — tags may be in 0..* clusters
e.g.- the color cluster may include red, blue and green

External resource- a resource stored outside the VLP server accessible via URL
Internal resource- a resource stored on the VLP server

Resource- an object with below properties associated with a single file of any format
stored on a server and having the following properties date entered, title, comments,
tags, icon (maybe thumbnail), links.

Tag- a single word that is associated with a resource and may be used in a search or to
group similar resources

Template — a series of resources created by a teacher w/ partial information
(questions/tasks for students in text areas) that are pre-tagged with an assignment tag.
They are designed to be the jumping off point for a student for a given assignment.

52

Appendix C: Example Proxy Customer Questionnaire

Please answer the following questions honestly and openly. Any negative responses are
not a reflection on you the customer, but indicate to the developer areas that need work
in this development process. Thank you for your time!

If questions ask you to rate and you rank less than 5, please explain why...

1) Meeting purpose (as you understood it):

2) Did you feel that the purpose of the meeting was achieved? 1 2 3 4 5

3a) Did you feel lost or confused at any point? Y /N
3b) If yes, did the developer pick up on your confusion and clarify? Y /N

3c) What feedback do you have that experience and if not satisfied, please explain.

4) In this particular meeting: to what extent do you feel your input affected the meeting’s
course, development decisions made, and overall design of the program? 1 2 3 4 5

5a) Were there tradeoffs (differences in what was wanted by you and what the developer
would commit to deliver) made in this meeting? Y /N

5b) If yes, please rank how well explained the tradeoffs were. 1 2 3 4 5

5¢) Now that the meeting is over, please rank how happy you are with the tradeoffs made.
12345

53

6) Is there anything from today’s meeting that you would have preferred to be organized
or handled differently? Y / N (if yes, please explain)

7) Overall, how did this meeting make you feel about the project?

54

Appendix D: Example Meeting Agenda

Meeting: 8 Jun 2006

Who: Hollar and Helms

Objective: Initial Design Meeting
Agenda:

Define high-level goals

Use verbs like “allow, provide, enable”

Define initial requirements the form of a core task list
Identify needs the system will satisfy

Tasks are grouped into categories

Tasks are the actions end users will perform

each can be prefaced with: “You should be able to...”

Develop user stories for core tasks

Keep to simple Subject-Verb-Object sentences to describe events.

Maintain notation description (common vocabulary) in a separate list.

(in other words, make user stories simple and define potentially confusing words in a
“data-dictionary” of sorts)

Attempt to prioritize tasks into 3 categories
This list will persist and allow the developer know where to focus for the next iteration —
Core/Important/Nice to have

Sketch initial user interface ideas on whiteboard in conjunction with 1-3
Create very primitive model that allows developer to start coding
Use list from 4 to determine what features to account for in initial design...

55

Appendix E: Example Proxy Customer Test Script

VLP Testing Script

There are two known major errors in the current build of the system. As a result, some
functionality will not be tested.

Cannot create new users

Editing resources and links not functional — messes up the internal/external resources

Today you will be starting a VLP that tracks interesting things about Brooks’s back yard.
Many fun things happen in Brooks’s back yard, and there is much media that we want to
make available via VLP.

1. Log in:
Username: brooks
Password: pOck3tdOg

2. Add internal resources and tag them:

You will be adding 7 resources to the VLP. For each one, you will be given the
title, text, and filename to upload. (all media in My Pictures/VLP folder) Once the
resource is created, you may add tags.

l:

Title: Smoking Pork

Text: These are a couple of pork loins about ready to come off the grill and be
eaten.

Filename: pork loin.jpg

Tags: Food, Summer, Fire

2:

Title: Pocket running in circles

Text: This is pocket running around in circles. This move cracks me up!
Filename: pocket_movie.avi

Tags: Pocket, Summer

56

3:

Title: Moonflower on mailbox

Text: This is the moonflower I gave to my neighbor. It never got that big because
it was left in a pot.

Filename: moon_flower.jpg

Tags: Plants, Summer

4.

Title: Baby watermellon

Text: This is one of the watermelons that grew in the garden last year. It ended up
getting fullsize and being quite tasty.

Filename: watermelon.jpg

Tags: Plants, Food, Summer

5:

Title: Summertime view from shed

Text: This is the whole yard from the back corner where the shed is. The garden
hasn’t become completely overgrown yet.

Filename: yard_summer.jpg

Tags: Yard, Summer

6:

Title: Snow covered fire pit

Text: This is the strange snow fall that we got in February. It was enough to
knock over the apple tree.

Filename: fire pit_snow.jpg

Tags: Fire, Winter, Snow

7

Title: Winter view from shed

Text: This is the whole yard from the back corner during the snow fall.
Filename: yard snow.jpg

Tags: Yard, Winter, Snow

57

3. Link the resources to each other and to outside web pages. Link each of the following
resources to the indicated resources, or to the indicated web pages. You are provided
with a title to use in the link, but must think of a title for the link.

INTERNAL LINKS:
Moonflower on mailbox
Link to “Baby watermelon” — more things that grow

Summertime view from shed
Link to “Winter view from shed” — Same picture, different season
Link to “Baby watermelon” — You can see the garden

Winter view from shed
Link to “Snow covered fire pit” — You can see the fire pit

EXTERNAL LINKS:
Smoking Pork
Link to “http://www.smoking-meat.com”
Link to “http://www.bbgsauceofthemonth.com”

Pocket running in circles
Link to “http://www.boxer-dog.org/”
Link to “http://www.boxerworld.com/

Baby watermelon
Link to “http://www.watermelon.org”

4. All done! Now you can click on tags to see all the items tagged with that tag, follow
the links and open resources in new windows!

58

Appendix F: Final Customer Test Script
VLP Testing Walkthru for Dr. Pam Taylor.

Please remember- any issues you come across, please note them. Most issues fall into the
following categories:

1) UI - User interface problems - colors, placement size of text, images or links,
etc.

2) Behavior - Usually unexpected behavior (you click and something "odd"
happens) or missing behavior (this isn't a way to do "this thing").

3) Bugs - Things that are actually broken. Hitting the "back button" will usually
allow you to back up and skip the steps that are broken.

This test will ask you to perform tasks inside the VLP system. The instructions will
outline small goals, then step you through completing those goals. You will create a
teacher and a student account, set up coursework as a teacher, complete the assignments
as a student, grade them as a teacher, then view the grading as a student.

Notes to you, Dr. Taylor, will be wrapped in {braces}. They are not steps to be
followed, just information for you.

Also, do not feel bad for not understanding something or getting confused! ;) Thisis a
weakness in the software or this document, not you!

Step 1: Create the teacher account

a) Open Firefox and go to: http://67.62.202.249:3000/ (does not currently work
with Safari — I discovered a bug tonight...)

b) Click “Register for an account”

¢) Create a teacher by filling in the fields as follows

Type: Teacher
Password: password

h. Password conf: password
d) Click “Submit”

a. First: Pam

b. Last: Taylor

c. Login ID: pam

d. Email: ptaylor@vcu.edu {not used for anything yet}
e. Grade: 1

f.

g.

59

Step 2: Create the student account

a) Click “Register for an account”
b) Create a teacher by filling in the fields as follows

First: Student

Last: One

Login ID: student_one

Email: student@vcu.edu {not used for anything yet}
Grade: 1

Type: Student
Password: password

Password conf: password
c) Click “Submit”

FR 0o Ao o

Step 3: Login as the teacher, and setup course, and students
{The “home screen” is pretty much blank right now, please ignore it...}

a) Click “Manage Courses” — where you add and edit courses and enrollment
b) Add a course named “Dogs” to Grade “1”

¢) Once created, click on “edit enrollment”

d) Add Student One to the course by clicking on the name

Step 4: Create clusters and tags for a course

{Many tags are associated with a cluster. Clusters are associated with courses so that the
students enrolled will see that they need to use them. One or two clusters would most
likely constitute an assignment. }

a) Create a cluster named “Cluster One” for course “Dogs”
b) Once created, click “edit tags”
¢) Add the following tags: “boxer greyhound agility”

60

Step 5: Create rubric to assess the Dogs Cluster

a) Click on “Rubrics”

b) Create a rubric named “Rubric one” for course “Dogs”
c) Click “edit line items” once the rubric is created

d) Add “Has at least 3 resources” for 5 points

e) Add “Found dogs that were cute” for 10 points

f) Add “Intelligent comments used” for 10 points

Step 6: Log the teacher out

a) Click on “logout” — upper right-hand corner

Step 7: Log in as the student

a) Login as “student_one” / “password”
b) Notice the list of unused tags on the left hand side

Step 8: Create a few resources for the assigned tags

{Internal resources are files that are uploaded, and External resources are web-pages.
Once resources are created, they may be tagged and linked to other resources. }

a) Click on “Add resource”
b) Add first resource
a. Title: Boxers
b. Text: Boxers are great dogs.
c. Click: External Resource
d. URL: http://www.boxerworld.com
¢) Once created, click “Edit tags” and add “boxer” {notice it drop off the list at
left}

d) Add another resource
a. Title: Senator Boxer
b. Text: This is a senator from CA.
c. Click: External Resource
d. URL: http://boxer.senate.gov

61

e) Once created, add the tag “boxer”

f) Link this resource to the first boxer one

Click on “add link”

Title: A link

Text: This is a link from a dog to a senator.
Click: Internal Link

Select: Boxers

c RO

g) Add another resource
a. Title: Agile dogs
b. Text: These dogs can do crazy tricks
c. Click: External Resource
d. URL: http://www.agiledogs.net
h) Once created, add the tag “agile”

i) Add another resource {just to demonstrate uploading}

a. Title: Not a greyhound

b. Text: This is a picture

c. Click: Internal Resource

d. File: Select any image file stored on you computer
j) Once created, add the tag “greyhound”

Step 9: Look over student’s portfolio
a) Click on “Cloud”
b) Notice how the font for boxer is larger — that’s because it has been used more
than the others.
¢) You can click on a tag and see all the resources tagged with that.
Step 10: Logout as student
a) Click on “Logout”
Step 11: Log back in as the teacher
a) “pam”/ “password”
Step 12: Review the Student work
a) Click on “Review students”
b) Click on the student’s name.

¢) Click on the name of the first resource.
d) At the bottom of the resource, click on “add comment”

62

e) Type: “This resource needs more content” and click “Create”

f) Click on “Review Students” again

g) Click on “Cluster One”

h) The resources to be graded are listed. Click “Grade with this rubric”
i) Fill the rubric in with comments and points for each line item.

Step 13: Logout the teacher and login the student

a) Logout teacher
b) Login student “student_one” / “password”

Step 14: Look over comments and rubrics

a) Click on “View” under Unseen comments

b) The resource is opened and the new comment marked.
c) Click on “Rubrics”

d) Click on “Rubric One”

e) See that the completed rubric is there.

So endeth the testing....

63

Appendix G: RDoc Generated Documentation Example for
Student Class

Cess Student

In: app/models/student.rb
Parent: User

Methods

in_course? 'rubric_templates_for_murse rubrics_for_course unseen_comments unused_tags

Public Instance methods

in_course?{course)

[Sourcel

rubric_templates for_ course(course)

{Source}

rubrics_for course{course)

[Source}

unseen_comments()

{Source]

unused_tags()

{Source}

64

Appendix H: Source Code for Student Class

class Student < User
has_and_belongs_to_many :courses
has_many :student_rubrics
has_many :resources, :foreign_key=>'user_ id'

def in course?(course)
a = course.students
a.include?(self)

end

a = Array.new

resources = Resource.find(:all, :conditions=>['user_id
self.id])

resources.each {|x|
x.comments.each {|y]|
if y.viewed by owner at == nil { a << y }

I
"~

}
}

return a
end

def unused tags
tags = Tag.tags_for user(:user id => self.id).collect{|x| x.name}
a = Array.new
courses.each {|course|
course.clusters.each {|cluster|
cluster.tags.each {|tag|
a << tag.name

}
}
}
a = a - tags
a.sort.uniqg
end

def rubrics_for_ course(course)
a = Array.new
student_rubrics.each {|x]|
a << x if x.rubric_template.course == course

}
a.uniqg
end

def rubric templates_for course(course)
a = Array.new
student_rubrics.each {|x]

a << x.rubric_template if x.rubric_template.course == course

} .
a.uniqg

end

end

Appendix I: Completed Proxy Questionnaires

Customer meeting survey Meeting Date:__{g l 15 UZ Iz

Please answer the rfollowing questions honestly and openly. Any negative
responses are not a reflection on you the customer, but indicate to the developer
areas that need work in this development process. Thank you for your time!

If questions ask you to rate and you rank less than 5, please explain why...
Pavt

_@kﬁ_i i anals /o&l«tm*(’lm/t&
gt AL@MM\ 4 als | digous Y Uf

2) Did you feel that the purpose of the meeting was achieved? 1 2 3 4@

1) Meeting purpose (as you understood it):
Pt 1 r

3a) Did you feel lost or confused at any point@N .

3b) If yes, did the developer(p your confusion and clarify@b N
3¢) What feedback do you h experience and if not satisfied, please
explain.

s 168 Ly weir
s grots Hug | jusd 1ofd oy Eﬁﬁ}

LMML—MMMW - bt x‘«z/
Nuda agmg Evmhwme
o ~ . il e
4)In trgis particular meeting: to-what extent do you feel your input affected the

meeting’s course, develppment decisions made, and overall design of the

program? 1 2 3
U U haol mmdmyum%waz

toud wike d Ml nao — | Leod | /
Ao | 0 d.Hu tul Ln/i@u(/ a})//ﬂ)a

U pviadit Wed (oiuuck MUcld g m,{f/,a}zu
DL Gk [HOE ok 02b kg | widd have.
2 spid &Wﬁfum@é [A

e d

Page 1 of 2 ver 1.0

Customer meeting survey Meeting Date:_(p {) / Q &L

Hgng

5a) Were %@%adeoffs (differences in what was wanted by you-and what the
developer would commit to deliver) made in this meeting? Y éN J

5b) If yes, please rank how well explained the tradeoffs were.

M%%\l W o Cd wokdecina 4 Duaia
mmkuw % amﬁz\ juw Huw Sn@f&z

5c) Now that the meeting is over, p!ease rank how happy you are with the
tradeoffs made. 1 2 3 4 5

2345

6) Is there anything from today’s meeting. that you would have preferred to be
organized or handled differently? Y / fyes, please explain)

7) Overall, how did this meeting make you feel about the project?

fy(wd W A [act Hod ot ceous 10,

i Moo howy 10 b guestous Hha? will

m yoA e 1 Ll F12U Yot yoU a0l The
loah had b siortH inderssting aud

unbgs (a J ’

mbéu/vmh WWW> - lap

you

Page 2 of 2 ver 1.0

66

Customer meeting survey Meeting Date:__j_(_il_‘_)}_@_

Please answer the following questions honestly and openly. Any negative
responses are not a reflection on you the customer, but indicate to the develo,
areas that need work in this development process. Thank you for your timel,

If questions ask you to rate and you rank less than 5, please expiain why..
1) Meeting purpose (as you understood it):
‘Q_c»vtw aLA ot lud Lé\ — AL LD c\,aa.QS +

A&WM%MQ..

2) Did you feel that the purpose of the meeting was achieved? 1 2 3 4 @

3a) Did you feel fost or confused at any point’@)l N

3b) If yes, did the develo 0 your confusion and clanfy k& ,
3c) What feedback do ygu have that experience and if not satisfied ~Please 5
explain. o SHag . TR WS v lss “% bare 7
Whaew v {@d ot e o & o/

MS&.&%J_@A&LKM&M
do becawne | OL'\.GL)-_& L&MMMQS-‘*M%
CHo b t/%@ Z&Zif‘ Wy v wre /m/(iwl?ci (;ﬁm{ﬁ’g

4) In this particular meeting: to what extent do you feel your input affected the by e, .[-,/‘)
meeting’s course, development decisions made, and overall design of the 1
program? 1 Z(3)4 5

\ > L - VPN WM
P \V=x: : Ao s
[04 ila ng/x+r/ Mx‘f(QMZA{WZDL
C&-MQQA wee Oé_/zm

o

Page 1 of 2 ver 1.0

Customer meeting survey Meeting Date: ;2 Z / (’

5a) Wer;mtradeoffs (differences in what was wanted by yomand what the
developer would commit to deliver) made in this meeting? Y /&
5b) If yes, please rank how well explained the tradeoffs were. 1 2 345

5c) Now that the meeting is over, please rank how happy you are with the
tradeoffsmade. 1 2 3 4 5

6) Is there anything from today’s meeting that you would have preferred to be
organized or handled differently? Y (if yes, please explain)

7) Overall, how did this meeting make you feel about the project?

gand still axpl o . Qeoleing fruasnd. o
; 72 M/?‘/O‘/”/AM/J QZJM 5:4"«/«4

{

Page 2 of 2 ver 1.0

68

1330[&

Customer meeting survey Meeting Date:

Please answer the following questions honestly and openly. Any negative
responses are not a reflection on you the customer, but indicate to the developer
areas that need work in this development process. Thank you for your time!

For questions with ranking, 5 is best and 1 is unsatisfactory. If questions ask
you to rate and you rank less than 5, please explain why...

1) Meeting purpose (as you understood it):
)m{ ok Mt roes W\i

2) Did you feel that the purpose of the meeting was achieved? 1 2 3 4@

\{ L5

3a) Did you feel lost or confused at any point? Y

3b) If yes, did the developer pick up on your confusitn and clarify? Y/ N
3¢) What feedback do you have)\that experience and if not satisfied, please
explain. adout

4) In this particular meeting: to what extent do you feel your input affected the
meeting's course, development decisions made, and overall design of the
program? 1 2 @ 45

[paked o (4 4 Wq%?%&?mw AL
¥ wk W{UM«X + {{WJFTs&/lAJLS Lot ettt
Se Jb emall bheaug.. :

Page 1 of 2 ver 1.0

69

Customer meeting survey Meeting Date:%ls 3o b

5a) Werﬁﬂﬁadwﬁs (differences in what was wanted by y d what the
developer d commit to deliver) made in this meeting? Y /(N
5b) If yes, please rank how well explained the tradeoffs were. 1 2 3 4 5

5¢) Now that the meeting is over, please rank how happy you are with the
tradeoffsmade. 1 2 3 4 5

6) Is there anything from today’s meeting that you would have preferred to be
organized or handled differently? Y /, if yes, please explain)

7) Overall, how did this meeting make you feel about the project?

3/"\(\ QAOO\J’.{
d

Page 2 of 2 ver 1.0

70

Customer meeting survey Meeting Date: I) O

Please answer the following questions honestly and openly. Any negative
responses are not a reflection on you the customer, but indicate to the developer
areas that need work in this development process. Thank you for your time!

If questions ask you to rate and you rank less than 5, please explain why...
1) Meeting purpose (as you understood it):

~ 8

(L\fmmx SO {)Jr MO hinssd buadld
> U)

2) Did you feel that the purpose of the meetmg was achieved? 1 2 3 4(5

N

3a) Did you feel lost or confused at any ponnt‘(LY/ N
3b) If yes, did the developer pick up on your confusion and clarify" Y /N
3c) What feedback do you have that experience and if not satisfied, please
explain, 1 ey

Tt wee vt et ol V\;fg)S e b
& N-« AAG Lu‘\t Deed pad oweg (’“Jél’ﬁi;;w‘\i’{:j"\fiﬁf
J{ U onald wed” happad o w s s il o VS

T :
;z/is {;{,m{i:x {m&?m? Ld‘v\«\\ J
i

i

4) In this particular meeting: to what extent do you feel your input affected the
meeting’s course, development decisions made, and overall design of the
program? 1 2 3 \4)3

v

| cat A Mk idndodin men WG g *%’(m)
AR DAL A m,m otV) ek lowe zu\ﬂ Ao
!&AI’\ 5}\/) d’{w,ﬂ {{x 3\-2” ;f 1< (1/%/«)1{ i /f/ {fZL
(ML becastne. | cavt Ao i\mi, 4 M&L(uxz
Wng b S %’3% Al woidd Tt sack,
U ;

{\

i}
o

Page 1 of 2 : ver 1.0

71

Customer meeting survey Meeting Date: g /! @b

5a) Were their tradeoffs (differences in what was wanted by you.and what the

developer would commit to deliver) made in this meeting? Y \N/?
5b) If yes, please rank how well explained the tradeoffs were.™1" 2 3 4 §

5¢) Now that the meeting is over, please rank how happy you are with the
tradeoffsmade. 1 2 3 4 5

6) Is there anything from today’s meeting that you would have preferred to be
organized or handled differently? Y /(\NM ﬁif yes, please explain)

7) Overall, how did this meeting make you feel about the project?

Sall éé%:{"ygw L f’}f; L0, 14 Wil
! SR

e v Maear wsers e tanehes ggiu femet,

A oale’? Cnild e lpsthe hiuse apr ot j} ‘
i) - 7
W i Couide imz’;;{: . ;‘}

Page 2 of 2 ver 1.0

73

Appendix J: Vita

Vita

Ashby Brooks Hollar was born on the 23" of May, 1977 in Richmond, VA and is an
American citizen. Brooks graduated from Robert E. Lee High School, Staunton, VA in
1995. He received a Bachelor of Science in the field of Computer Science in 1999 from
James Madison University in Harrisonburg, VA. From 1999 through 2001 he was
adjunct faculty in the Computer Science Department at James Madison University. The
completion of this thesis meets the final requirement for his Master of Science in
Computer Science from Virginia Commonwealth University, Richmond, VA, 2006.

	Virginia Commonwealth University
	VCU Scholars Compass
	2006

	Cowboy: An Agile Programming Methodology for a Solo Programmer
	Ashby Brooks Hollar
	Downloaded from

	Table of Contents
	Abstract
	1. Introduction
	2. Current Thoughts on Cowboy Programming
	3. Brief Overview of Agile Programming Methodologies
	4. Cowboy - How Agile Practices Can Help
	5. Plans for the Application of Cowboy
	6. Final Product Analysis
	7. Process Analysis
	8. Cowboy 3.0 - How to Improve the Process
	9. Conclusion
	Appendix A: Sources Used
	Appendix B: Artifacts
	Appendix C: Example Proxy Customer Questionnaire
	Appendix D: Example Meeting Agenda
	Appendix E: Example Proxy Customer Test Script
	Appendix F: Final Customer Test Script
	Appendix G: RDoc Generated Documentation Example for Student Class
	Appendix H: Source Code for Student Class
	Appendix I: Completed Proxy Questionnaires
	Appendix J: Vita

