Papers by Christine Hendon (Fleming)
Journal of Biophotonics
A single-channel high-resolution cross-polarization (CP) optical coherence tomography (OCT) syste... more A single-channel high-resolution cross-polarization (CP) optical coherence tomography (OCT) system is presented for multicontrast imaging of human myocardium in one-shot measurement. The intensity and functional contrasts, including the ratio between the cross-and co-polarization channels as well as the cumulative retardation, are reconstructed from the CP-OCT readout. By comparing the CP-OCT results with histological analysis, it is shown that the system can successfully delineate microstructures in the myocardium and differentiate the fibrotic myocardium from normal or ablated myocardium based on the functional contrasts provided by the CP-OCT system. The feasibility of using A-line profiles from the 2 orthogonal polarization channels to identify fibrotic myocardium, normal myocardium and ablated lesion is also discussed.
Photonic Therapeutics and Diagnostics XII, 2016
Photonic Therapeutics and Diagnostics XII, 2016
Photonic Therapeutics and Diagnostics XII, 2016
Biomedical Optics 2016, 2016
Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX, 2016
Biomedical Optics 2016, 2016
Journal of biomedical optics, 2016
Journal of biomedical optics, 2016
We present an ultrahigh-resolution spectral domain optical coherence tomography (OCT) system in 8... more We present an ultrahigh-resolution spectral domain optical coherence tomography (OCT) system in 800 nm with a low-noise supercontinuum source (SC) optimized for myocardial imaging. The system was demonstrated to have an axial resolution of 2.72 μm with a large imaging depth of 1.78 mm and a 6-dB falloff range of 0.89 mm. The lateral resolution (5.52 μm) was compromised to enhance the image penetration required for myocardial imaging. The noise of the SC source was analyzed extensively and an imaging protocol was proposed for SC-based OCT imaging with appreciable contrast. Three-dimensional datasets were acquired ex vivo on the endocardium side of tissue specimens from different chambers of fresh human and swine hearts. With the increased resolution and contrast, features such as elastic fibers, Purkinje fibers, and collagen fiber bundles were observed. The correlation between the structural information revealed in the OCT images and tissue pathology was discussed as well.
Biomedical Optics 2016, 2016
Biomedical Optics 2016, 2016
Journal of the American College of Cardiology, 2014
Biomedical optics express, 2015
Effects of radiofrequency ablation (RFA) treatment of atrial fibrillation can be limited by the a... more Effects of radiofrequency ablation (RFA) treatment of atrial fibrillation can be limited by the ability to characterize the tissue in contact. Parameters obtained by conventional catheters, such as impedance and temperature can be insufficient in providing physiological information pertaining to effective treatment. In this report, we present a near-infrared spectroscopy (NIRS)-integrated catheter capable of extracting tissue optical properties. Validation experiments were first performed in tissue phantoms with known optical properties. We then apply the technique for characterization of myocardial tissues in swine and human hearts, ex vivo. Additionally, we demonstrate the recovery of critical parameters relevant to RFA therapy including contact verification, and lesion transmurality. These findings support the application of NIRS for improved guidance in RFA therapeutic interventions.
2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015
2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015
Journal of Biomechanics, 2015
The uterine cervix during pregnancy is the vital mechanical barrier which resists compressive and... more The uterine cervix during pregnancy is the vital mechanical barrier which resists compressive and tensile loads generated from a growing fetus. Premature cervical remodeling and softening is hypothesized to result in the shortening of the cervix, which is known to increase a woman׳s risk of preterm birth. To understand the role of cervical material properties in preventing preterm birth, we derive a cervical material model based on previous mechanical, biochemical and histological experiments conducted on nonpregnant and pregnant human hysterectomy cervical tissue samples. In this study we present a three-dimensional fiber composite model that captures the equilibrium material behavior of the tissue in tension and compression. Cervical tissue is modeled as a fibrous composite material, where a single family of preferentially aligned and continuously distributed collagen fibers are embedded in a compressible neo-Hookean ground substance. The total stress in the collagen solid network is calculated by integrating the fiber stresses. The shape of the fiber distribution is described by an ellipsoid where semi-principal axis lengths are fit to optical coherence tomography measurements. The composite material model is fit to averaged mechanical testing data from uni-axial compression and tension experiments, and averaged material parameters are reported for nonpregnant and term pregnant human cervical tissue. The model is then evaluated by investigating the stress and strain state of a uniform thick-walled cylinder under a compressive stress with collagen fibers preferentially aligned in the circumferential direction. This material modeling framework for the equilibrium behavior of human cervical tissue serves as a basis to determine the role of preferentially-aligned cervical collagen fibers in preventing cervical deformation during pregnancy.
Biomedical Optics Express, 2015
During pregnancy, the uterine cervix is the mechanical barrier that prevents delivery of a fetus.... more During pregnancy, the uterine cervix is the mechanical barrier that prevents delivery of a fetus. The underlying cervical collagen ultrastructure, which influences the overall mechanical properties of the cervix, plays a role in maintaining a successful pregnancy until term. Yet, not much is known about this collagen ultrastructure in pregnant and nonpregnant human tissue. We used optical coherence tomography to investigate the directionality and dispersion of collagen fiber bundles in the human cervix. An image analysis tool has been developed, combining a stitching method with a fiber orientation measurement, to study axially sliced cervix samples. This tool was used to analyze the ultrastructure of ex-vivo pregnant and non-pregnant hysterectomy tissue samples taken at the internal os, which is the region of the cervix adjacent to the uterus. With this tool, directionality maps of collagen fiber bundles and dispersion of collagen fiber orientation were analyzed. It was found that that the overall preferred directionality of the collagen fibers for both the nonpregnant and pregnant samples were circling around the inner cervical canal. Pregnant samples showed greater dispersion than non-pregnant samples. Lastly, we observed regional differences in collagen fiber dispersion. Fibers closer to the inner canal showed more dispersion than the fibers on the radial edges.
Photonic Therapeutics and Diagnostics X, 2014
ABSTRACT
2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014
Optical coherence tomography (OCT) is able to provide high resolution volumetric data for biologi... more Optical coherence tomography (OCT) is able to provide high resolution volumetric data for biological tissues. However, the field of view (FOV) of OCT is sometimes smaller than the field of interest, which limits the clinical application of OCT. One way to overcome the drawback is to stitch multiple 3D volumes. In this paper, we propose a novel method to register multiple overlapped volumetric OCT data into a single volume. The relative positions of overlapped volumes were estimated on en face plane and at depth. On en face plane, scale invariant feature transform (SIFT) was implemented to extract the keypoints in each volume. Based on the invariant features, volumes were paired through keypoint matching. Then, we formulated the relationship between paired offsets and absolute positions as a linear model and estimated the centroid of each volume using least square method. Moreover, we calibrated the depth displacement in each paired volume and aligned the z coordinates of volumes globally. The algorithm was validated through stitching multiple volumetric OCT datasets of human cervix tissue and of swine heart. The experimental results demonstrated that our method is capable of visualizing biological samples over a wider FOV, which enhances the investigation of tissue structure such as fiber orientation.
Uploads
Papers by Christine Hendon (Fleming)