Overview
ETH Balance
0 ETH
ETH Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
2692624 | 233 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0x79fDD888...5D6492DeD The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
XYKPool
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 50 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import "openzeppelin/utils/math/Math.sol"; import "openzeppelin/utils/math/SignedMath.sol"; import "openzeppelin/utils/math/SafeCast.sol"; import {ud60x18, intoUint256, exp2, log2, convert, pow} from "@prb/math/src/UD60x18.sol"; import "contracts/lib/Token.sol"; import "contracts/lib/UncheckedMemory.sol"; import "contracts/lib/PoolBalanceLib.sol"; import {rpow} from "contracts/lib/RPow.sol"; import "contracts/pools/SingleTokenGauge.sol"; /** * @dev a pool with weighted geometric average as its invariant, aka Balancer weighted pool. * Please refer to the url below for detailed mathematical explanation. * https://velocore.gitbook.io/velocore-v2/technical-docs/pool-specifics/generalized-cpmm * * There is two implementation of the same mathematical function. one in this contract, and another in ConstantProductLibrary. * they were separated to make compiled bytecode less than 24kb. * * one implementation uses integer division; they are cheap and accurate, but prone to overflows, especially when weights are high. * one implementation uses addition and substraction over logarithm; they are expensive and inaccurate, but can handle far more ranges. * * this contract is the first one. it falls back to the second one (ConstantProductLibrary) when neccesary. * */ contract XYKPool is SingleTokenGauge, PoolWithLPToken, ISwap, IBribe { using UncheckedMemory for uint256[]; using UncheckedMemory for int128[]; using UncheckedMemory for Token[]; using SafeCast for int256; using SafeCast for uint256; using TokenLib for Token; event FeeChanged(uint256 fee1e18); event DecayChanged(uint256 decay); Token immutable token0_; Token immutable token1_; uint256 internal immutable _3token_i_0; uint256 internal immutable _3token_i_1; uint256 internal immutable _3token_i_lp; uint32 public decayRate; uint32 public fee1e9; uint32 public lastWithdrawTimestamp; uint32 lastTradeTimestamp; uint128 public feeMultiplier; uint8 internal immutable _lpDecimals; int256 public index; int256 lastIndex; int256 logYieldEMA; function token0() external view returns (address) { if (token0_ == NATIVE_TOKEN) return WETH_ADDRESS; else return token0_.addr(); } function token1() external view returns (address) { if (token1_ == NATIVE_TOKEN) return WETH_ADDRESS; else return token1_.addr(); } function getLogYieldEMA() external view returns (int256) { int256 indexNew = ((_invariant() * 1e18) / (totalSupply() + 2)) .toInt256(); if (lastTradeTimestamp != block.timestamp) { int256 an = int256( rpow( 0.999983955055097432543272791e27, block.timestamp - lastTradeTimestamp, 1e27 ) ); int256 logYield = (int256( intoUint256(log2(ud60x18(uint256(indexNew * 1e27)))) ) - int256(intoUint256(log2(ud60x18(uint256(lastIndex * 1e27)))))) / int256(block.timestamp - lastTradeTimestamp); return (logYieldEMA * an + (1e27 - an) * logYield) / 1e27; } return logYieldEMA; } function floorDiv(int256 a, int256 b) internal pure returns (int256) { uint256 a_ = SignedMath.abs(a); uint256 b_ = SignedMath.abs(b); if ((a > 0) == (b > 0)) { return SafeCast.toInt256(a_ / b_); } else { return -SafeCast.toInt256(Math.ceilDiv(a_, b_)); } } function ceilDiv(int256 a, int256 b) internal pure returns (int256) { uint256 a_ = SignedMath.abs(a); uint256 b_ = SignedMath.abs(b); if ((a > 0) == (b > 0)) { return SafeCast.toInt256(Math.ceilDiv(a_, b_)); } else { return -SafeCast.toInt256(a_ / b_); } } function setDecay(uint256 decayRate_) external authenticate { decayRate = uint32(decayRate_); emit DecayChanged(decayRate); } function setFee(uint256 fee1e9_, uint256 decayRate_) external authenticate { require(fee1e9 <= 0.1e9); fee1e9 = uint32(fee1e9_); emit FeeChanged(fee1e9 * uint256(1e8)); } constructor( IVault vault_, string memory _name, string memory _symbol, Token t0, Token t1, uint32 fee1e9_, uint32 decay ) SingleTokenGauge(vault_, toToken(this), this) { decayRate = decay; fee1e9 = fee1e9_; index = 1e18; lastIndex = 1e18; PoolWithLPToken._initialize(_name, _symbol); emit FeeChanged(fee1e9 * uint256(1e8)); emit DecayChanged(decayRate); token0_ = t0; token1_ = t1; uint256 ilp; uint256 i0; uint256 i1; if (toToken(this) < t0) { ilp = 0; i0 = 1; i1 = 2; } else if (toToken(this) < t1) { ilp = 1; i0 = 0; i1 = 2; } else { ilp = 2; i0 = 0; i1 = 1; } _3token_i_0 = i0; _3token_i_1 = i1; _3token_i_lp = ilp; _lpDecimals = (t0.decimals() + t1.decimals()) / 2; } // positive amount => pool receives, user gives // negative amount => user receives, pool gives // type(int256).max => to be computed event Sync(uint112 reserve0, uint112 reserve1); function velocore__execute( address user, Token[] calldata t, int128[] memory r, bytes calldata ) external onlyVault returns (int128[] memory deltaGauge, int128[] memory deltaPool) { deltaGauge = new int128[](t.length); deltaPool = new int128[](t.length); (int256 a_0, int256 a_1, ) = getReserves(); emit Sync(uint112(uint256(a_0)), uint112(uint256(a_1))); a_0 += 1; a_1 += 1; if (lastWithdrawTimestamp != block.timestamp) { feeMultiplier = 1e9; } if (!vault.emissionStarted()) { int256 indexNew = ((_invariant() * 1e18) / (totalSupply() + 1)) .toInt256(); if ( lastTradeTimestamp != block.timestamp && lastIndex != indexNew ) { int256 an = int256( rpow( 0.999983955055097432543272791e27, block.timestamp - lastTradeTimestamp, 1e27 ) ); int256 logYield = (int256( intoUint256(log2(ud60x18(uint256(indexNew * 1e27)))) ) - int256( intoUint256(log2(ud60x18(uint256(lastIndex * 1e27)))) )) / int256(block.timestamp - lastTradeTimestamp); logYieldEMA = (logYieldEMA * an + (1e27 - an) * logYield) / 1e27; lastIndex = indexNew; lastTradeTimestamp = uint32(block.timestamp); } index = indexNew; } if (t.length == 3) { require( t.u(_3token_i_lp) == toToken(this) && t.u(_3token_i_0) == token0_ && t.u(_3token_i_1) == token1_ ); int256 r_lp = r.u(_3token_i_lp); int256 r_0 = r.u(_3token_i_0); int256 r_1 = r.u(_3token_i_1); if (r_lp != type(int128).max) { if (r_0 != type(int128).max) { r_1 = _exchange_for_t1( a_0, a_1, r_0, floorDiv(r_lp * index, 1e18), int256(uint256(fee1e9 * feeMultiplier)) ); } else if (r_1 != type(int128).max) { r_0 = _exchange_for_t0( a_0, a_1, r_1, floorDiv(r_lp * index, 1e18), int256(uint256(fee1e9 * feeMultiplier)) ); } else { (r_0, r_1) = _exchange_from_lp( a_0, a_1, floorDiv(r_lp * index, 1e18) ); } } else { require(r_0 != type(int128).max || r_1 != type(int128).max); if (r_0 == type(int128).max) { r_0 = (r_1 * (a_0)) / (a_1); } else if (r_1 == type(int128).max) { r_1 = (r_0 * (a_1)) / (a_0); } r_lp = ceilDiv( _exchange_for_lp( a_0, a_1, r_0, r_1, int256(uint256(fee1e9 * feeMultiplier)) ) * 1e18, index ); } deltaPool.u(_3token_i_0, r_0.toInt128()); deltaPool.u(_3token_i_1, r_1.toInt128()); deltaPool.u(_3token_i_lp, r_lp.toInt128()); _handleSwap(user, r_lp, r_0, r_1); return (deltaGauge, deltaPool); } else if (t.length == 2) { require( (r.u(0) == type(int128).max) != (r.u(1) == type(int128).max) ); uint256 i_lp = 2; uint256 i_0 = 2; uint256 i_1 = 2; Token tt = t.u(0); if (tt == toToken(this)) i_lp = 0; else if (tt == token0_) i_0 = 0; else if (tt == token1_) i_1 = 0; else revert("unsupported token"); tt = t.u(1); if (tt == toToken(this)) i_lp = 1; else if (tt == token0_) i_0 = 1; else if (tt == token1_) i_1 = 1; else revert("unsupported token"); int256 r_lp = i_lp == 2 ? int256(0) : r.u(i_lp); int256 r_0 = i_0 == 2 ? int256(0) : r.u(i_0); int256 r_1 = i_1 == 2 ? int256(0) : r.u(i_1); if (r_lp == type(int128).max) { r_lp = ceilDiv( _exchange_for_lp( a_0, a_1, r_0, r_1, int256(uint256(fee1e9 * feeMultiplier)) ) * 1e18, index ); } else if (r_1 == type(int128).max) { r_1 = _exchange_for_t1( a_0, a_1, r_0, floorDiv(r_lp * index, 1e18), int256(uint256(fee1e9 * feeMultiplier)) ); } else { r_0 = _exchange_for_t0( a_0, a_1, r_1, floorDiv(r_lp * index, 1e18), int256(uint256(fee1e9 * feeMultiplier)) ); } if (i_lp != 2) { deltaPool.u(i_lp, r_lp.toInt128()); } else { require(r_lp == 0); } if (i_0 != 2) { deltaPool.u(i_0, r_0.toInt128()); } else { require(r_0 == 0); } if (i_1 != 2) { deltaPool.u(i_1, r_1.toInt128()); } else { require(r_1 == 0); } _handleSwap(user, r_lp, r_0, r_1); return (deltaGauge, deltaPool); } else { revert("unsupported operation"); } } function getReserves() public view returns (int256, int256, uint256) { return ( _getPoolBalance(token0_).toInt256(), _getPoolBalance(token1_).toInt256(), block.timestamp ); } function _exchange( int256 a_0, int256 a_1, int256 b_1, int256 d_k, int256 fee ) internal returns (int256) { int256 a_k = Math .sqrt((a_0.toUint256()) * (a_1.toUint256()), Math.Rounding.Up) .toInt256(); int256 b_k = a_k - d_k; require(b_k > 0); if (a_k <= b_k) { b_1 -= (SignedMath.max(((a_k * b_1) / b_k) - a_1, 0) * fee) / 1e18; } else if (a_k >= b_k) { b_1 -= (SignedMath.max(b_1 - ((b_k * a_1) / a_k), 0) * fee) / 1e18; } int256 b_0 = ceilDiv(b_k ** 2, b_1); if (a_k <= b_k) { b_0 += (SignedMath.max(((a_k * b_0) / b_k) - a_0, 0) * fee) / (1e18 - fee); } else if (a_k > b_k) { b_0 += (SignedMath.max(b_0 - ((b_k * a_0) / a_k), 0) * fee) / (1e18 - fee); } return b_0 - a_0; } function _exchange_for_t0( int256 a_0, int256 a_1, int256 r_1, int256 r_lp, int256 fee ) internal returns (int256) { return _exchange(a_0, a_1, a_1 + r_1, r_lp, fee); } function _exchange_for_t1( int256 a_0, int256 a_1, int256 r_0, int256 r_lp, int256 fee ) internal returns (int256) { return _exchange(a_1, a_0, a_0 + r_0, r_lp, fee); } function _exchange_for_lp( int256 a_0, int256 a_1, int256 r_0, int256 r_1, int256 fee ) internal returns (int256) { int256 b_0 = a_0 + r_0; int256 b_1 = a_1 + r_1; int256 a_k = Math .sqrt((a_0 * a_1).toUint256(), Math.Rounding.Up) .toInt256(); int256 b_k = invariant(b_0, b_1); if (a_k <= b_k) { b_0 -= (SignedMath.max(((a_k * b_0) / b_k) - a_0, 0) * fee) / 1e18; b_1 -= (SignedMath.max(((a_k * b_1) / b_k) - a_1, 0) * fee) / 1e18; } else if (a_k > b_k) { b_0 -= (SignedMath.max(b_0 - ((b_k * a_0) / a_k), 0) * fee) / 1e18; b_1 -= (SignedMath.max(b_1 - ((b_k * a_1) / a_k), 0) * fee) / 1e18; } return a_k - invariant(b_0, b_1); } function _exchange_from_lp( int256 a_0, int256 a_1, int256 r_lp ) internal returns (int256, int256) { Math.Rounding r = r_lp > 0 ? Math.Rounding.Up : Math.Rounding.Down; int256 inv = Math .sqrt((a_0.toUint256()) * (a_1.toUint256()), r) .toInt256(); return (ceilDiv(-((a_0) * r_lp), inv), ceilDiv(-((a_1) * r_lp), inv)); } event Mint(address indexed sender, uint amount0, uint amount1); event Burn( address indexed sender, uint amount0, uint amount1, address indexed to ); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); function _handleSwap( address user, int256 rlp, int256 r0, int256 r1 ) internal { if (rlp > 0) { emit Burn(user, uint256(-int256(r0)), uint256(-int256(r1)), user); _simulateBurn(uint256(int256(rlp))); uint256 inv = _invariant(); uint256 d = (inv - uint256(int256(rlp))); feeMultiplier = uint128((feeMultiplier * inv) / Math.max(1, d)); } else if (rlp < 0) { emit Mint(user, uint256(int256(r0)), uint256(int256(r1))); _simulateMint(uint256(-int256(rlp))); } else { uint256 a0i; uint256 a1i; uint256 a0o; uint256 a1o; if (r0 > 0) { a0i = uint256(int256(r0)); } else { a0o = uint256(int256(-r0)); } if (r1 > 0) { a1i = uint256(int256(r1)); } else { a1o = uint256(int256(-r1)); } emit Swap(user, a0i, a1i, a0o, a1o, user); } } function poolBalances() public view returns (uint256[] memory) { return _getPoolBalances(relevantTokens()); } function relevantTokens() public view virtual returns (Token[] memory) { Token[] memory ret = new Token[](3); unchecked { ret.u(0, toToken(this)); ret.u(1, token0_); ret.u(2, token1_); } return ret; } function invariant(int256 a, int256 b) internal pure returns (int256) { uint256 a_ = a.toUint256(); uint256 b_ = b.toUint256(); return invariant(a_, b_).toInt256(); } function invariant(uint256 a, uint256 b) internal pure returns (uint256) { return Math.sqrt(a * b); } function _invariant() internal view virtual returns (uint256) { (int256 a_0, int256 a_1, ) = getReserves(); return invariant(a_0 + 1, a_1 + 1).toUint256(); } function _excessInvariant() internal view virtual returns (uint256) { uint256 minted = Math.ceilDiv( (totalSupply() + 1) * index.toUint256(), 1e18 ); (int256 a_0, int256 a_1, ) = getReserves(); uint256 actual = _invariant(); return actual < minted ? 0 : actual - minted; } function listedTokens() public view override returns (Token[] memory) { Token[] memory ret = new Token[](2); unchecked { ret.u(0, token0_); ret.u(1, token1_); } return ret; } function swapType() external view override returns (string memory) { return "cpmm"; } function lpTokens() public view override returns (Token[] memory ret) { ret = new Token[](1); ret[0] = toToken(this); } function poolParams() external view override(IPool, Pool) returns (bytes memory) { uint256[] memory r = new uint256[](2); r[0] = 1; r[1] = 1; return abi.encode(fee1e9 * uint256(1e9), r); } function decimals() external view override returns (uint8) { return _lpDecimals; } function velocore__bribe( IGauge gauge, uint256 elapsed ) external onlyVault returns ( Token[] memory bribeTokens, int128[] memory deltaGauge, int128[] memory deltaPool, int128[] memory deltaExternal ) { require(address(gauge) == address(this)); bribeTokens[0] = toToken(this); deltaGauge = new int128[](1); deltaPool = new int128[](1); deltaExternal = new int128[](1); if (IVault(vault).emissionStarted()) { uint256 decay = 2 ** 32 - rpow(decayRate, elapsed, 2 ** 32); uint256 decayed = (_excessInvariant() * 1e18 / uint256(index) * decay) / 2 ** 32; bribeTokens = new Token[](1); deltaPool.u(0, -decayed.toInt256().toInt128()); } } function bribeTokens(IGauge gauge) external view returns (Token[] memory) { Token v = toToken(this); assembly { mstore(0, 0x20) mstore(0x20, 1) mstore(0x40, v) return(0, 0x60) } } function bribeRates(IGauge gauge) external view returns (uint256[] memory) { uint256 v; unchecked { v = address(gauge) == address(this) ? (_excessInvariant() * 1e18 / uint256(index) * (2 ** 32 - uint256(decayRate))) / 2 ** 32 : 0; } assembly { mstore(0, 0x20) mstore(0x20, 1) mstore(0x40, v) return(0, 0x60) } } function underlyingTokens( Token tok ) external view returns (Token[] memory) { require(tok == toToken(this)); return listedTokens(); } function setFeeToZero() external onlyVault { feeMultiplier = 0; fee1e9 = 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.0; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing * all math on `uint256` and `int256` and then downcasting. */ library SafeCast { /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits * * _Available since v4.7._ */ function toUint248(uint256 value) internal pure returns (uint248) { require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits"); return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits * * _Available since v4.7._ */ function toUint240(uint256 value) internal pure returns (uint240) { require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits"); return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits * * _Available since v4.7._ */ function toUint232(uint256 value) internal pure returns (uint232) { require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits"); return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits * * _Available since v4.2._ */ function toUint224(uint256 value) internal pure returns (uint224) { require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits"); return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits * * _Available since v4.7._ */ function toUint216(uint256 value) internal pure returns (uint216) { require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits"); return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits * * _Available since v4.7._ */ function toUint208(uint256 value) internal pure returns (uint208) { require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits"); return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits * * _Available since v4.7._ */ function toUint200(uint256 value) internal pure returns (uint200) { require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits"); return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits * * _Available since v4.7._ */ function toUint192(uint256 value) internal pure returns (uint192) { require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits"); return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits * * _Available since v4.7._ */ function toUint184(uint256 value) internal pure returns (uint184) { require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits"); return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits * * _Available since v4.7._ */ function toUint176(uint256 value) internal pure returns (uint176) { require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits"); return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits * * _Available since v4.7._ */ function toUint168(uint256 value) internal pure returns (uint168) { require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits"); return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits * * _Available since v4.7._ */ function toUint160(uint256 value) internal pure returns (uint160) { require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits"); return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits * * _Available since v4.7._ */ function toUint152(uint256 value) internal pure returns (uint152) { require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits"); return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits * * _Available since v4.7._ */ function toUint144(uint256 value) internal pure returns (uint144) { require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits"); return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits * * _Available since v4.7._ */ function toUint136(uint256 value) internal pure returns (uint136) { require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits"); return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v2.5._ */ function toUint128(uint256 value) internal pure returns (uint128) { require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits"); return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits * * _Available since v4.7._ */ function toUint120(uint256 value) internal pure returns (uint120) { require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits"); return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits * * _Available since v4.7._ */ function toUint112(uint256 value) internal pure returns (uint112) { require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits"); return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits * * _Available since v4.7._ */ function toUint104(uint256 value) internal pure returns (uint104) { require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits"); return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits * * _Available since v4.2._ */ function toUint96(uint256 value) internal pure returns (uint96) { require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits"); return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits * * _Available since v4.7._ */ function toUint88(uint256 value) internal pure returns (uint88) { require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits"); return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits * * _Available since v4.7._ */ function toUint80(uint256 value) internal pure returns (uint80) { require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits"); return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits * * _Available since v4.7._ */ function toUint72(uint256 value) internal pure returns (uint72) { require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits"); return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v2.5._ */ function toUint64(uint256 value) internal pure returns (uint64) { require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits"); return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits * * _Available since v4.7._ */ function toUint56(uint256 value) internal pure returns (uint56) { require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits"); return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits * * _Available since v4.7._ */ function toUint48(uint256 value) internal pure returns (uint48) { require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits"); return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits * * _Available since v4.7._ */ function toUint40(uint256 value) internal pure returns (uint40) { require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits"); return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v2.5._ */ function toUint32(uint256 value) internal pure returns (uint32) { require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits"); return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits * * _Available since v4.7._ */ function toUint24(uint256 value) internal pure returns (uint24) { require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits"); return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v2.5._ */ function toUint16(uint256 value) internal pure returns (uint16) { require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits"); return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits * * _Available since v2.5._ */ function toUint8(uint256 value) internal pure returns (uint8) { require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits"); return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. * * _Available since v3.0._ */ function toUint256(int256 value) internal pure returns (uint256) { require(value >= 0, "SafeCast: value must be positive"); return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits * * _Available since v4.7._ */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); require(downcasted == value, "SafeCast: value doesn't fit in 248 bits"); } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits * * _Available since v4.7._ */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); require(downcasted == value, "SafeCast: value doesn't fit in 240 bits"); } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits * * _Available since v4.7._ */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); require(downcasted == value, "SafeCast: value doesn't fit in 232 bits"); } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits * * _Available since v4.7._ */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); require(downcasted == value, "SafeCast: value doesn't fit in 224 bits"); } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits * * _Available since v4.7._ */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); require(downcasted == value, "SafeCast: value doesn't fit in 216 bits"); } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits * * _Available since v4.7._ */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); require(downcasted == value, "SafeCast: value doesn't fit in 208 bits"); } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits * * _Available since v4.7._ */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); require(downcasted == value, "SafeCast: value doesn't fit in 200 bits"); } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits * * _Available since v4.7._ */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); require(downcasted == value, "SafeCast: value doesn't fit in 192 bits"); } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits * * _Available since v4.7._ */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); require(downcasted == value, "SafeCast: value doesn't fit in 184 bits"); } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits * * _Available since v4.7._ */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); require(downcasted == value, "SafeCast: value doesn't fit in 176 bits"); } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits * * _Available since v4.7._ */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); require(downcasted == value, "SafeCast: value doesn't fit in 168 bits"); } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits * * _Available since v4.7._ */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); require(downcasted == value, "SafeCast: value doesn't fit in 160 bits"); } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits * * _Available since v4.7._ */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); require(downcasted == value, "SafeCast: value doesn't fit in 152 bits"); } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits * * _Available since v4.7._ */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); require(downcasted == value, "SafeCast: value doesn't fit in 144 bits"); } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits * * _Available since v4.7._ */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); require(downcasted == value, "SafeCast: value doesn't fit in 136 bits"); } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v3.1._ */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); require(downcasted == value, "SafeCast: value doesn't fit in 128 bits"); } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits * * _Available since v4.7._ */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); require(downcasted == value, "SafeCast: value doesn't fit in 120 bits"); } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits * * _Available since v4.7._ */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); require(downcasted == value, "SafeCast: value doesn't fit in 112 bits"); } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits * * _Available since v4.7._ */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); require(downcasted == value, "SafeCast: value doesn't fit in 104 bits"); } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits * * _Available since v4.7._ */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); require(downcasted == value, "SafeCast: value doesn't fit in 96 bits"); } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits * * _Available since v4.7._ */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); require(downcasted == value, "SafeCast: value doesn't fit in 88 bits"); } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits * * _Available since v4.7._ */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); require(downcasted == value, "SafeCast: value doesn't fit in 80 bits"); } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits * * _Available since v4.7._ */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); require(downcasted == value, "SafeCast: value doesn't fit in 72 bits"); } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v3.1._ */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); require(downcasted == value, "SafeCast: value doesn't fit in 64 bits"); } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits * * _Available since v4.7._ */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); require(downcasted == value, "SafeCast: value doesn't fit in 56 bits"); } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits * * _Available since v4.7._ */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); require(downcasted == value, "SafeCast: value doesn't fit in 48 bits"); } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits * * _Available since v4.7._ */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); require(downcasted == value, "SafeCast: value doesn't fit in 40 bits"); } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v3.1._ */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); require(downcasted == value, "SafeCast: value doesn't fit in 32 bits"); } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits * * _Available since v4.7._ */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); require(downcasted == value, "SafeCast: value doesn't fit in 24 bits"); } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v3.1._ */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); require(downcasted == value, "SafeCast: value doesn't fit in 16 bits"); } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits * * _Available since v3.1._ */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); require(downcasted == value, "SafeCast: value doesn't fit in 8 bits"); } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. * * _Available since v3.0._ */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256"); return int256(value); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.0; import "openzeppelin/token/ERC20/utils/SafeERC20.sol"; import "openzeppelin/token/ERC1155/IERC1155.sol"; import "openzeppelin/token/ERC1155/extensions/ERC1155Supply.sol"; import "openzeppelin/token/ERC20/extensions/IERC20Metadata.sol"; import "openzeppelin/token/ERC721/extensions/IERC721Metadata.sol"; import "contracts/blast/IERC20Rebasing.sol"; // a library for abstracting tokens // provides a common interface for ERC20, ERC1155, and ERC721 tokens. bytes32 constant TOKEN_MASK = 0x000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; bytes32 constant ID_MASK = 0x00FFFFFFFFFFFFFFFFFFFFFF0000000000000000000000000000000000000000; uint256 constant ID_SHIFT = 160; bytes32 constant TOKENSPEC_MASK = 0xFF00000000000000000000000000000000000000000000000000000000000000; string constant NATIVE_TOKEN_SYMBOL = "ETH"; type Token is bytes32; type TokenSpecType is bytes32; using {TokenSpec_equals as ==} for TokenSpecType global; using {Token_equals as ==} for Token global; using {Token_lt as <} for Token global; using {Token_lte as <=} for Token global; using {Token_ne as !=} for Token global; Token constant NATIVE_TOKEN = Token.wrap(bytes32(0xEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE) & TOKEN_MASK); address constant WETH_ADDRESS = 0x4300000000000000000000000000000000000004; function TokenSpec_equals(TokenSpecType a, TokenSpecType b) pure returns (bool) { return TokenSpecType.unwrap(a) == TokenSpecType.unwrap(b); } function Token_equals(Token a, Token b) pure returns (bool) { return Token.unwrap(a) == Token.unwrap(b); } function Token_ne(Token a, Token b) pure returns (bool) { return Token.unwrap(a) != Token.unwrap(b); } function Token_lt(Token a, Token b) pure returns (bool) { return Token.unwrap(a) < Token.unwrap(b); } function Token_lte(Token a, Token b) pure returns (bool) { return Token.unwrap(a) <= Token.unwrap(b); } library TokenSpec { TokenSpecType constant ERC20 = TokenSpecType.wrap(0x0000000000000000000000000000000000000000000000000000000000000000); TokenSpecType constant ERC721 = TokenSpecType.wrap(0x0100000000000000000000000000000000000000000000000000000000000000); TokenSpecType constant ERC1155 = TokenSpecType.wrap(0x0200000000000000000000000000000000000000000000000000000000000000); } function toToken(IERC20 tok) pure returns (Token) { return Token.wrap(bytes32(uint256(uint160(address(tok))))); } function toToken(TokenSpecType spec_, uint88 id_, address addr_) pure returns (Token) { return Token.wrap( TokenSpecType.unwrap(spec_) | bytes32((bytes32(uint256(id_)) << ID_SHIFT) & ID_MASK) | bytes32(uint256(uint160(addr_))) ); } library TokenLib { using TokenLib for Token; using TokenLib for bytes32; using SafeERC20 for IERC20; using SafeERC20 for IERC20Metadata; function wrap(bytes32 data) internal pure returns (Token) { return Token.wrap(data); } function unwrap(Token tok) internal pure returns (bytes32) { return Token.unwrap(tok); } function addr(Token tok) internal pure returns (address) { return address(uint160(uint256(tok.unwrap() & TOKEN_MASK))); } function id(Token tok) internal pure returns (uint256) { return uint256((tok.unwrap() & ID_MASK) >> ID_SHIFT); } function spec(Token tok) internal pure returns (TokenSpecType) { return TokenSpecType.wrap(tok.unwrap() & TOKENSPEC_MASK); } function toIERC20(Token tok) internal pure returns (IERC20Metadata) { return IERC20Metadata(tok.addr()); } function toIERC1155(Token tok) internal pure returns (IERC1155) { return IERC1155(tok.addr()); } function toIERC721(Token tok) internal pure returns (IERC721Metadata) { return IERC721Metadata(tok.addr()); } function balanceOf(Token tok, address user) internal view returns (uint256) { if (tok == NATIVE_TOKEN) { return user.balance; } else if (tok.spec() == TokenSpec.ERC20) { require(tok.id() == 0); return tok.toIERC20().balanceOf(user); // ERC721 balanceOf() has the same signature } else if (tok.spec() == TokenSpec.ERC1155) { return tok.toIERC1155().balanceOf(user, tok.id()); } else if (tok.spec() == TokenSpec.ERC721) { return tok.toIERC721().ownerOf(tok.id()) == user ? 1 : 0; } revert("invalid token"); } function totalSupply(Token tok) internal view returns (uint256) { require (tok != NATIVE_TOKEN); if (tok.spec() == TokenSpec.ERC20) { require(tok.id() == 0); return tok.toIERC20().totalSupply(); // ERC721 balanceOf() has the same signature } else if (tok.spec() == TokenSpec.ERC1155) { return ERC1155Supply(tok.addr()).totalSupply(tok.id()); } else if (tok.spec() == TokenSpec.ERC721) { return 1; } revert("invalid token"); } function symbol(Token tok) internal view returns (string memory) { if (tok == NATIVE_TOKEN) { return NATIVE_TOKEN_SYMBOL; } else if (tok.spec() == TokenSpec.ERC20) { require(tok.id() == 0); return tok.toIERC20().symbol(); // ERC721 balanceOf() has the same signature } else if (tok.spec() == TokenSpec.ERC1155) { return ""; } else if (tok.spec() == TokenSpec.ERC721) { return tok.toIERC721().symbol(); } } function decimals(Token tok) internal view returns (uint8) { if (tok == NATIVE_TOKEN) { return 18; } else if (tok.spec() == TokenSpec.ERC20) { require(tok.id() == 0); return IERC20Metadata(tok.addr()).decimals(); } return 0; } function transferFrom(Token tok, address from, address to, uint256 amount) internal { if (tok == NATIVE_TOKEN) { require(from == address(this), "native token transferFrom is not supported"); assembly { let success := call(gas(), to, amount, 0, 0, 0, 0) if iszero(success) { revert(0, 0) } } } else if (tok.spec() == TokenSpec.ERC20) { require(tok.id() == 0); if (from == address(this)) { tok.toIERC20().safeTransfer(to, amount); } else { tok.toIERC20().safeTransferFrom(from, to, amount); } } else if (tok.spec() == TokenSpec.ERC721) { require(amount == 1, "invalid amount"); tok.toIERC721().safeTransferFrom(from, to, tok.id()); } else if (tok.spec() == TokenSpec.ERC1155) { tok.toIERC1155().safeTransferFrom(from, to, tok.id(), amount, ""); } else { revert("invalid token"); } } function meteredTransferFrom(Token tok, address from, address to, uint256 amount) internal returns (uint256) { uint256 balBefore = tok.balanceOf(to); tok.transferFrom(from, to, amount); return tok.balanceOf(to) - balBefore; } function safeTransferFrom(Token tok, address from, address to, uint256 amount) internal { require(tok.meteredTransferFrom(from, to, amount) >= amount); } function toScaledBalance(Token tok, uint256 amount) internal view returns (uint256) { if (block.chainid == 81457) { if (tok == toToken(BLAST_USDB)) { return amount * 1e9 / BLAST_USDB.price(); } else if (tok == NATIVE_TOKEN) { return amount * 1e9 / IERC20Rebasing(0x4300000000000000000000000000000000000000).price(); } } return amount; } function fromScaledBalance(Token tok, uint256 amount) internal view returns (uint256) { if (block.chainid == 81457) { if (tok == toToken(BLAST_USDB)) { return amount * BLAST_USDB.price() / 1e9; } else if (tok == NATIVE_TOKEN) { return amount * IERC20Rebasing(0x4300000000000000000000000000000000000000).price() / 1e9; } } return amount; } function toScaledBalance(Token tok, int128 amount) internal view returns (int128) { if (block.chainid == 81457) { if (tok == toToken(BLAST_USDB)) { return amount * 1e9 / int128(int256(BLAST_USDB.price())); } else if (tok == NATIVE_TOKEN) { return amount * 1e9 / int128(int256(IERC20Rebasing(0x4300000000000000000000000000000000000000).price())); } } return amount; } function fromScaledBalance(Token tok, int128 amount) internal view returns (int128) { if (block.chainid == 81457) { if (tok == toToken(BLAST_USDB)) { return amount * int128(int256(BLAST_USDB.price())) / 1e9; } else if (tok == NATIVE_TOKEN) { return amount * int128(int256(IERC20Rebasing(0x4300000000000000000000000000000000000000).price())) / 1e9; } } return amount; } }
// SPDX-License-Identifier: AUNLICENSED pragma solidity ^0.8.0; import {Token} from "contracts/lib/Token.sol"; // solidity by default perform bound check for every array access. // we define functions for unchecked access here library UncheckedMemory { using UncheckedMemory for bytes32[]; using UncheckedMemory for uint256[]; using UncheckedMemory for Token[]; function u(bytes32[] memory self, uint256 i) internal view returns (bytes32 ret) { assembly ("memory-safe") { ret := mload(add(self, mul(32, add(i, 1)))) } } function u(bytes32[] memory self, uint256 i, bytes32 v) internal view { assembly ("memory-safe") { mstore(add(self, mul(32, add(i, 1))), v) } } function u(uint256[] memory self, uint256 i) internal view returns (uint256 ret) { assembly ("memory-safe") { ret := mload(add(self, mul(32, add(i, 1)))) } } function u(uint256[] memory self, uint256 i, uint256 v) internal view { assembly ("memory-safe") { mstore(add(self, mul(32, add(i, 1))), v) } } function u(int128[] memory self, uint256 i) internal view returns (int128 ret) { assembly ("memory-safe") { ret := mload(add(self, mul(32, add(i, 1)))) } } function u(int128[] memory self, uint256 i, int128 v) internal view { assembly ("memory-safe") { mstore(add(self, mul(32, add(i, 1))), v) } } // uc instead u for calldata array; as solidity does not support type-location overloading. function uc(Token[] calldata self, uint256 i) internal view returns (Token ret) { assembly ("memory-safe") { ret := calldataload(add(self.offset, mul(32, i))) } } function u(Token[] memory self, uint256 i) internal view returns (Token ret) { assembly ("memory-safe") { ret := mload(add(self, mul(32, add(i, 1)))) } } function u(Token[] memory self, uint256 i, Token v) internal view { assembly ("memory-safe") { mstore(add(self, mul(32, add(i, 1))), v) } } } using UncheckedMemory for bytes32[]; using UncheckedMemory for uint256[]; using UncheckedMemory for Token[]; // binary search on sorted arrays function _binarySearch(Token[] calldata arr, Token token) view returns (uint256) { if (arr.length == 0) return type(uint256).max; uint256 start = 0; uint256 end = arr.length - 1; unchecked { while (start <= end) { uint256 mid = start + (end - start) / 2; if (arr.uc(mid) == token) { return mid; } else if (arr.uc(mid) < token) { start = mid + 1; } else { if (mid == 0) return type(uint256).max; end = mid - 1; } } } return type(uint256).max; } // binary search on sorted arrays, memory array version function _binarySearchM(Token[] memory arr, Token token) view returns (uint256) { if (arr.length == 0) return type(uint256).max; uint256 start = 0; uint256 end = arr.length - 1; unchecked { while (start <= end) { uint256 mid = start + (end - start) / 2; if (arr.u(mid) == token) { return mid; } else if (arr.u(mid) < token) { start = mid + 1; } else { if (mid == 0) return type(uint256).max; end = mid - 1; } } } return type(uint256).max; }
// SPDX-License-Identifier: AUNLICENSED pragma solidity ^0.8.0; import "openzeppelin/utils/math/SafeCast.sol"; // a pool's balances are stored as two uint128; // the only difference between them is that new emissions are credited into the gauge balance. // the pool can use them in any way they want. type PoolBalance is bytes32; library PoolBalanceLib { using PoolBalanceLib for PoolBalance; using SafeCast for uint256; using SafeCast for int256; function gaugeHalf(PoolBalance self) internal pure returns (uint256) { return uint128(bytes16(PoolBalance.unwrap(self))); } function poolHalf(PoolBalance self) internal pure returns (uint256) { return uint128(uint256(PoolBalance.unwrap(self))); } function pack(uint256 a, uint256 b) internal pure returns (PoolBalance) { uint128 a_ = uint128(a); uint128 b_ = uint128(b); require(b == b_ && a == a_, "overflow"); return PoolBalance.wrap(bytes32(bytes16(a_)) | bytes32(uint256(b_))); } function credit(PoolBalance self, int256 dGauge, int256 dPool) internal pure returns (PoolBalance) { return pack( (int256(uint256(self.gaugeHalf())) + dGauge).toUint256(), (int256(uint256(self.poolHalf())) + dPool).toUint256() ); } function credit(PoolBalance self, int256 dPool) internal pure returns (PoolBalance) { return pack(self.gaugeHalf(), (int256(uint256(self.poolHalf())) + dPool).toUint256()); } }
// SPDX-License-Identifier: AUNLICENSED // From MakerDAO DSS // Copyright (C) 2018 Rain <[email protected]> // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see <https://www.gnu.org/licenses/>. pragma solidity ^0.8.0; function rpow(uint256 x, uint256 n, uint256 base) pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { z := base } default { z := 0 } } default { switch mod(n, 2) case 0 { z := base } default { z := x } let half := div(base, 2) // for rounding. for { n := div(n, 2) } n { n := div(n, 2) } { let xx := mul(x, x) if iszero(eq(div(xx, x), x)) { revert(0, 0) } let xxRound := add(xx, half) if lt(xxRound, xx) { revert(0, 0) } x := div(xxRound, base) if mod(n, 2) { let zx := mul(z, x) if and(iszero(iszero(x)), iszero(eq(div(zx, x), z))) { revert(0, 0) } let zxRound := add(zx, half) if lt(zxRound, zx) { revert(0, 0) } z := div(zxRound, base) } } } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import "./PoolWithLPToken.sol"; import "contracts/interfaces/IGauge.sol"; import "contracts/lib/RPow.sol"; import "contracts/lib/UncheckedMemory.sol"; import "openzeppelin/utils/math/SafeCast.sol"; import "openzeppelin/utils/structs/EnumerableSet.sol"; /** * @dev a base contract for gauges with single stakes. * * pretty standard Masterchef-like design. * */ struct StakerInformation { uint128 staked; uint128 emissionPerStake1e9AtLastClaim; } contract SingleTokenGauge is Pool, IGauge { using UncheckedMemory for uint256[]; using UncheckedMemory for int128[]; using UncheckedMemory for Token[]; using TokenLib for Token; using SafeCast for uint256; using SafeCast for int256; uint128 emissionPerStake1e9; mapping(address => StakerInformation) stakerInformation; Token internal immutable emissionToken; Token public immutable stake; constructor( IVault vault_, Token stake_, IBribe bribe ) Pool(vault_, address(this), msg.sender) { emissionToken = vault_.emissionToken(); vault_.attachBribe(this, bribe); stake = stake_; } /** * called by the vault to nofity new emission */ function velocore__emission(uint256 newEmissions) external onlyVault { if (newEmissions > 0) { uint256 totalStakes = _getGaugeBalance(stake); if (totalStakes > 0) { unchecked { // totalSupply of emissionToken * 1e9 < uint128_max emissionPerStake1e9 += uint128( (newEmissions * 1e9) / totalStakes ); } } } } function velocore__gauge( address user, Token[] calldata tokens, int128[] memory amounts, bytes calldata ) external virtual onlyVault returns (int128[] memory deltaGauge, int128[] memory deltaPool) { deltaGauge = new int128[](tokens.length); deltaPool = new int128[](tokens.length); uint256 stakeIndex = _binarySearch(tokens, stake); // assumed to exist uint256 emissionIndex = _binarySearch(tokens, emissionToken); unchecked { // total emissions cannot be greater than the total supply of the emissionToken (200Me18). log10(2^128) - 18 - 9 - 8 > 0; therefore it doesnt overflow. uint256 claimed = ((emissionPerStake1e9 - stakerInformation[user].emissionPerStake1e9AtLastClaim) * stakerInformation[user].staked) / 1e9; // the total supply of the emissionToken = 200Me18 < int128_max deltaGauge.u(emissionIndex, -int128(int256(claimed))); } if (stakeIndex != type(uint256).max) { stakerInformation[user].staked = (int256( uint256(stakerInformation[user].staked) ) + amounts.u(stakeIndex)).toUint256().toUint128(); deltaGauge.u(stakeIndex, amounts.u(stakeIndex)); } stakerInformation[user] .emissionPerStake1e9AtLastClaim = emissionPerStake1e9; } function stakeableTokens() external view virtual returns (Token[] memory) { Token v = stake; assembly { mstore(0, 0x20) mstore(0x20, 1) mstore(0x40, v) return(0, 0x60) } } function stakedTokens( address user ) external view virtual returns (uint256[] memory) { uint256 v = stakerInformation[user].staked; assembly { mstore(0, 0x20) mstore(0x20, 1) mstore(0x40, v) return(0, 0x60) } } function stakedTokens() external view virtual returns (uint256[] memory) { uint256 v = _getGaugeBalance(stake); assembly { mstore(0, 0x20) mstore(0x20, 1) mstore(0x40, v) return(0, 0x60) } } function emissionShare( address user ) external view virtual returns (uint256) { uint256 gb = _getGaugeBalance(stake); if (gb == 0) return 0; unchecked { return (stakerInformation[user].staked * uint256(1e18)) / gb; } } function naturalBribes() external view returns (Token[] memory) { return ISwap(stake.addr()).listedTokens(); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded down. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ // /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded down. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + delta * (remainder > 0 ? 1 : 0)`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder * (remainder > 0 ? 1 : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded down. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm. /// /// For $0 \leq x < 1$, the logarithm is calculated as: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm, add it to the result and finally calculate $y = x * 2^{-n}$. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // This is $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded down. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC1155/IERC1155.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC1155 compliant contract, as defined in the * https://eips.ethereum.org/EIPS/eip-1155[EIP]. * * _Available since v3.1._ */ interface IERC1155 is IERC165 { /** * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`. */ event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value); /** * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all * transfers. */ event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] values ); /** * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to * `approved`. */ event ApprovalForAll(address indexed account, address indexed operator, bool approved); /** * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI. * * If an {URI} event was emitted for `id`, the standard * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value * returned by {IERC1155MetadataURI-uri}. */ event URI(string value, uint256 indexed id); /** * @dev Returns the amount of tokens of token type `id` owned by `account`. * * Requirements: * * - `account` cannot be the zero address. */ function balanceOf(address account, uint256 id) external view returns (uint256); /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids) external view returns (uint256[] memory); /** * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`, * * Emits an {ApprovalForAll} event. * * Requirements: * * - `operator` cannot be the caller. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns true if `operator` is approved to transfer ``account``'s tokens. * * See {setApprovalForAll}. */ function isApprovedForAll(address account, address operator) external view returns (bool); /** * @dev Transfers `amount` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}. * - `from` must have a balance of tokens of type `id` of at least `amount`. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) external; /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC1155/extensions/ERC1155Supply.sol) pragma solidity ^0.8.0; import "../ERC1155.sol"; /** * @dev Extension of ERC1155 that adds tracking of total supply per id. * * Useful for scenarios where Fungible and Non-fungible tokens have to be * clearly identified. Note: While a totalSupply of 1 might mean the * corresponding is an NFT, there is no guarantees that no other token with the * same id are not going to be minted. */ abstract contract ERC1155Supply is ERC1155 { mapping(uint256 => uint256) private _totalSupply; /** * @dev Total amount of tokens in with a given id. */ function totalSupply(uint256 id) public view virtual returns (uint256) { return _totalSupply[id]; } /** * @dev Indicates whether any token exist with a given id, or not. */ function exists(uint256 id) public view virtual returns (bool) { return ERC1155Supply.totalSupply(id) > 0; } /** * @dev See {ERC1155-_beforeTokenTransfer}. */ function _beforeTokenTransfer( address operator, address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual override { super._beforeTokenTransfer(operator, from, to, ids, amounts, data); if (from == address(0)) { for (uint256 i = 0; i < ids.length; ++i) { _totalSupply[ids[i]] += amounts[i]; } } if (to == address(0)) { for (uint256 i = 0; i < ids.length; ++i) { uint256 id = ids[i]; uint256 amount = amounts[i]; uint256 supply = _totalSupply[id]; require(supply >= amount, "ERC1155: burn amount exceeds totalSupply"); unchecked { _totalSupply[id] = supply - amount; } } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
import "openzeppelin/token/ERC20/IERC20.sol"; IERC20Rebasing constant BLAST_USDB = IERC20Rebasing( 0x4300000000000000000000000000000000000003 ); IERC20Rebasing constant BLAST_WETH = IERC20Rebasing( 0x4300000000000000000000000000000000000004 ); interface IERC20Rebasing is IERC20 { enum YieldMode { AUTOMATIC, VOID, CLAIMABLE } function configure(YieldMode) external returns (uint256); function claim( address recipient, uint256 amount ) external returns (uint256); function getClaimableAmount( address account ) external view returns (uint256); function price() external view returns (uint256); function sharePrice() external view returns (uint256); }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import "contracts/interfaces/IVault.sol"; import "contracts/lib/Token.sol"; import "./Pool.sol"; /** * @dev a base contract for pools with single ERC20 lp token. * * Two notable features: * <1> * Inspired by composable pools of Balancer, it mints MAX_SUPPLY tokens to the vault on initialization, allowing this pool to 'mint' lp tokens from velocore__execute(). * However, the initial mint only happens in vault's perspective; balanceOf() and totalSupply() is customized to trick the vault into thinking it has MAX_SUPPLY tokens. * when msg.sender != vault, the view functions behave normally. * * <2> * the vault has max allowance on every addresses by default, and this can't be changed. */ abstract contract PoolWithLPToken is Pool, IERC20 { uint128 constant MAX_SUPPLY = uint128(type(uint112).max); string public name; string public symbol; mapping(address => uint256) _balanceOf; mapping(address => mapping(address => uint256)) _allowance; function _initialize(string memory name_, string memory symbol_) internal { name = name_; symbol = symbol_; _mintVirtualSupply(); } function _mintVirtualSupply() internal { _balanceOf[address(vault)] = MAX_SUPPLY; vault.notifyInitialSupply(toToken(this), 0, MAX_SUPPLY); // this sets pool balances to the given value. } /** * @dev due to the mechanism of 'minting' by transferring, mint and burn events behave weirdly. * this function should be called whenever new tokens are created by transferring. * these simulate minting and burning from/to the vault. */ function _simulateMint(uint256 amount) internal { emit Transfer(address(0), address(vault), amount); } function _simulateBurn(uint256 amount) internal { emit Transfer(address(vault), address(0), amount); } /** * @dev vault balance is subtracted by pool balance to behave "normally" */ function balanceOf(address addr) external view returns (uint256) { if (msg.sender != address(vault) && addr == address(vault)) { unchecked { return _balanceOf[addr] - _getPoolBalance(toToken(this)); } } return _balanceOf[addr]; } function decimals() external view virtual returns (uint8) { return 18; } function allowance(address from, address spender) external view returns (uint256) { return (spender == address(vault)) ? type(uint256).max : _allowance[from][spender]; } /** * @dev subtracted by pool balance to behave "normally" */ function totalSupply() public view virtual returns (uint256) { return MAX_SUPPLY - _getPoolBalance(toToken(this)); } function approve(address spender, uint256 amount) public virtual returns (bool) { _allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function increaseAllowance(address _spender, uint256 _addedValue) public returns (bool) { approve(_spender, _allowance[msg.sender][_spender] + _addedValue); return true; } function decreaseAllowance(address _spender, uint256 _subtractedValue) public returns (bool) { approve(_spender, _allowance[msg.sender][_spender] - _subtractedValue); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { _balanceOf[msg.sender] -= amount; unchecked { _balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) { if (msg.sender != address(vault)) { uint256 allowed = _allowance[from][msg.sender]; if (allowed != type(uint256).max) _allowance[from][msg.sender] = allowed - amount; } _balanceOf[from] -= amount; unchecked { _balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; import "contracts/interfaces/IPool.sol"; /** * Gauges are just pools. * instead of velocore__execute, they interact with velocore__gauge. * (un)staking is done by putting/extracting staking token (usually LP token) from/into the pool with velocore__gauge. * harvesting is done by setting the staking amount to zero. */ interface IGauge is IPool { /** * @dev This method is called by Vault.execute(). * the parameters and return values are the same as velocore__execute. * The only difference is that the vault will call velocore__emission before calling velocore__gauge. */ function velocore__gauge( address user, Token[] calldata tokens, int128[] memory amounts, bytes calldata data ) external returns (int128[] memory deltaGauge, int128[] memory deltaPool); /** * @dev This method is called by Vault.execute() before calling velocore__emission or changing votes. * * The vault will credit emitted VC into the gauge balance. * IGauge is expected to update its internal ledger. * @param newEmissions newly emitted VCs since last emission */ function velocore__emission(uint256 newEmissions) external; function stakeableTokens() external view returns (Token[] memory); function stakedTokens( address user ) external view returns (uint256[] memory); function stakedTokens() external view returns (uint256[] memory); function emissionShare(address user) external view returns (uint256); function naturalBribes() external view returns (Token[] memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastValue; // Update the index for the moved value set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions needed by both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates floor(x*y÷denominator) with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded down. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates floor(x*y÷1e18) with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded down. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates floor(x*y÷denominator) with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - Unlike {mulDiv}, the result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // This works thanks to two's complement. // "sgt" stands for "signed greater than" and "sub(0,1)" is max uint256. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round down the result. uint256 roundedDownResult = x / result; if (result >= roundedDownResult) { result = roundedDownResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int256 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. uint256 constant uUNIT = 1e18; UD2x18 constant UNIT = UD2x18.wrap(1e18);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC1155/ERC1155.sol) pragma solidity ^0.8.0; import "./IERC1155.sol"; import "./IERC1155Receiver.sol"; import "./extensions/IERC1155MetadataURI.sol"; import "../../utils/Address.sol"; import "../../utils/Context.sol"; import "../../utils/introspection/ERC165.sol"; /** * @dev Implementation of the basic standard multi-token. * See https://eips.ethereum.org/EIPS/eip-1155 * Originally based on code by Enjin: https://github.com/enjin/erc-1155 * * _Available since v3.1._ */ contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI { using Address for address; // Mapping from token ID to account balances mapping(uint256 => mapping(address => uint256)) private _balances; // Mapping from account to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json string private _uri; /** * @dev See {_setURI}. */ constructor(string memory uri_) { _setURI(uri_); } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC1155).interfaceId || interfaceId == type(IERC1155MetadataURI).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC1155MetadataURI-uri}. * * This implementation returns the same URI for *all* token types. It relies * on the token type ID substitution mechanism * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP]. * * Clients calling this function must replace the `\{id\}` substring with the * actual token type ID. */ function uri(uint256) public view virtual override returns (string memory) { return _uri; } /** * @dev See {IERC1155-balanceOf}. * * Requirements: * * - `account` cannot be the zero address. */ function balanceOf(address account, uint256 id) public view virtual override returns (uint256) { require(account != address(0), "ERC1155: address zero is not a valid owner"); return _balances[id][account]; } /** * @dev See {IERC1155-balanceOfBatch}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch(address[] memory accounts, uint256[] memory ids) public view virtual override returns (uint256[] memory) { require(accounts.length == ids.length, "ERC1155: accounts and ids length mismatch"); uint256[] memory batchBalances = new uint256[](accounts.length); for (uint256 i = 0; i < accounts.length; ++i) { batchBalances[i] = balanceOf(accounts[i], ids[i]); } return batchBalances; } /** * @dev See {IERC1155-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC1155-isApprovedForAll}. */ function isApprovedForAll(address account, address operator) public view virtual override returns (bool) { return _operatorApprovals[account][operator]; } /** * @dev See {IERC1155-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes memory data ) public virtual override { require( from == _msgSender() || isApprovedForAll(from, _msgSender()), "ERC1155: caller is not token owner or approved" ); _safeTransferFrom(from, to, id, amount, data); } /** * @dev See {IERC1155-safeBatchTransferFrom}. */ function safeBatchTransferFrom( address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) public virtual override { require( from == _msgSender() || isApprovedForAll(from, _msgSender()), "ERC1155: caller is not token owner or approved" ); _safeBatchTransferFrom(from, to, ids, amounts, data); } /** * @dev Transfers `amount` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - `from` must have a balance of tokens of type `id` of at least `amount`. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function _safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes memory data ) internal virtual { require(to != address(0), "ERC1155: transfer to the zero address"); address operator = _msgSender(); uint256[] memory ids = _asSingletonArray(id); uint256[] memory amounts = _asSingletonArray(amount); _beforeTokenTransfer(operator, from, to, ids, amounts, data); uint256 fromBalance = _balances[id][from]; require(fromBalance >= amount, "ERC1155: insufficient balance for transfer"); unchecked { _balances[id][from] = fromBalance - amount; } _balances[id][to] += amount; emit TransferSingle(operator, from, to, id, amount); _afterTokenTransfer(operator, from, to, ids, amounts, data); _doSafeTransferAcceptanceCheck(operator, from, to, id, amount, data); } /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function _safeBatchTransferFrom( address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch"); require(to != address(0), "ERC1155: transfer to the zero address"); address operator = _msgSender(); _beforeTokenTransfer(operator, from, to, ids, amounts, data); for (uint256 i = 0; i < ids.length; ++i) { uint256 id = ids[i]; uint256 amount = amounts[i]; uint256 fromBalance = _balances[id][from]; require(fromBalance >= amount, "ERC1155: insufficient balance for transfer"); unchecked { _balances[id][from] = fromBalance - amount; } _balances[id][to] += amount; } emit TransferBatch(operator, from, to, ids, amounts); _afterTokenTransfer(operator, from, to, ids, amounts, data); _doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, amounts, data); } /** * @dev Sets a new URI for all token types, by relying on the token type ID * substitution mechanism * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP]. * * By this mechanism, any occurrence of the `\{id\}` substring in either the * URI or any of the amounts in the JSON file at said URI will be replaced by * clients with the token type ID. * * For example, the `https://token-cdn-domain/\{id\}.json` URI would be * interpreted by clients as * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json` * for token type ID 0x4cce0. * * See {uri}. * * Because these URIs cannot be meaningfully represented by the {URI} event, * this function emits no events. */ function _setURI(string memory newuri) internal virtual { _uri = newuri; } /** * @dev Creates `amount` tokens of token type `id`, and assigns them to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function _mint( address to, uint256 id, uint256 amount, bytes memory data ) internal virtual { require(to != address(0), "ERC1155: mint to the zero address"); address operator = _msgSender(); uint256[] memory ids = _asSingletonArray(id); uint256[] memory amounts = _asSingletonArray(amount); _beforeTokenTransfer(operator, address(0), to, ids, amounts, data); _balances[id][to] += amount; emit TransferSingle(operator, address(0), to, id, amount); _afterTokenTransfer(operator, address(0), to, ids, amounts, data); _doSafeTransferAcceptanceCheck(operator, address(0), to, id, amount, data); } /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function _mintBatch( address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { require(to != address(0), "ERC1155: mint to the zero address"); require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch"); address operator = _msgSender(); _beforeTokenTransfer(operator, address(0), to, ids, amounts, data); for (uint256 i = 0; i < ids.length; i++) { _balances[ids[i]][to] += amounts[i]; } emit TransferBatch(operator, address(0), to, ids, amounts); _afterTokenTransfer(operator, address(0), to, ids, amounts, data); _doSafeBatchTransferAcceptanceCheck(operator, address(0), to, ids, amounts, data); } /** * @dev Destroys `amount` tokens of token type `id` from `from` * * Emits a {TransferSingle} event. * * Requirements: * * - `from` cannot be the zero address. * - `from` must have at least `amount` tokens of token type `id`. */ function _burn( address from, uint256 id, uint256 amount ) internal virtual { require(from != address(0), "ERC1155: burn from the zero address"); address operator = _msgSender(); uint256[] memory ids = _asSingletonArray(id); uint256[] memory amounts = _asSingletonArray(amount); _beforeTokenTransfer(operator, from, address(0), ids, amounts, ""); uint256 fromBalance = _balances[id][from]; require(fromBalance >= amount, "ERC1155: burn amount exceeds balance"); unchecked { _balances[id][from] = fromBalance - amount; } emit TransferSingle(operator, from, address(0), id, amount); _afterTokenTransfer(operator, from, address(0), ids, amounts, ""); } /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. */ function _burnBatch( address from, uint256[] memory ids, uint256[] memory amounts ) internal virtual { require(from != address(0), "ERC1155: burn from the zero address"); require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch"); address operator = _msgSender(); _beforeTokenTransfer(operator, from, address(0), ids, amounts, ""); for (uint256 i = 0; i < ids.length; i++) { uint256 id = ids[i]; uint256 amount = amounts[i]; uint256 fromBalance = _balances[id][from]; require(fromBalance >= amount, "ERC1155: burn amount exceeds balance"); unchecked { _balances[id][from] = fromBalance - amount; } } emit TransferBatch(operator, from, address(0), ids, amounts); _afterTokenTransfer(operator, from, address(0), ids, amounts, ""); } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Emits an {ApprovalForAll} event. */ function _setApprovalForAll( address owner, address operator, bool approved ) internal virtual { require(owner != operator, "ERC1155: setting approval status for self"); _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Hook that is called before any token transfer. This includes minting * and burning, as well as batched variants. * * The same hook is called on both single and batched variants. For single * transfers, the length of the `ids` and `amounts` arrays will be 1. * * Calling conditions (for each `id` and `amount` pair): * * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens * of token type `id` will be transferred to `to`. * - When `from` is zero, `amount` tokens of token type `id` will be minted * for `to`. * - when `to` is zero, `amount` of ``from``'s tokens of token type `id` * will be burned. * - `from` and `to` are never both zero. * - `ids` and `amounts` have the same, non-zero length. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address operator, address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual {} /** * @dev Hook that is called after any token transfer. This includes minting * and burning, as well as batched variants. * * The same hook is called on both single and batched variants. For single * transfers, the length of the `id` and `amount` arrays will be 1. * * Calling conditions (for each `id` and `amount` pair): * * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens * of token type `id` will be transferred to `to`. * - When `from` is zero, `amount` tokens of token type `id` will be minted * for `to`. * - when `to` is zero, `amount` of ``from``'s tokens of token type `id` * will be burned. * - `from` and `to` are never both zero. * - `ids` and `amounts` have the same, non-zero length. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address operator, address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual {} function _doSafeTransferAcceptanceCheck( address operator, address from, address to, uint256 id, uint256 amount, bytes memory data ) private { if (to.isContract()) { try IERC1155Receiver(to).onERC1155Received(operator, from, id, amount, data) returns (bytes4 response) { if (response != IERC1155Receiver.onERC1155Received.selector) { revert("ERC1155: ERC1155Receiver rejected tokens"); } } catch Error(string memory reason) { revert(reason); } catch { revert("ERC1155: transfer to non-ERC1155Receiver implementer"); } } } function _doSafeBatchTransferAcceptanceCheck( address operator, address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) private { if (to.isContract()) { try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, amounts, data) returns ( bytes4 response ) { if (response != IERC1155Receiver.onERC1155BatchReceived.selector) { revert("ERC1155: ERC1155Receiver rejected tokens"); } } catch Error(string memory reason) { revert(reason); } catch { revert("ERC1155: transfer to non-ERC1155Receiver implementer"); } } } function _asSingletonArray(uint256 element) private pure returns (uint256[] memory) { uint256[] memory array = new uint256[](1); array[0] = element; return array; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/interfaces/IAuthorizer.sol"; import "contracts/interfaces/IFacet.sol"; import "contracts/interfaces/IGauge.sol"; import "contracts/interfaces/IConverter.sol"; import "contracts/interfaces/IBribe.sol"; import "contracts/interfaces/ISwap.sol"; import "contracts/lib/Token.sol"; bytes32 constant SSLOT_HYPERCORE_TREASURY = bytes32( uint256(keccak256("hypercore.treasury")) - 1 ); bytes32 constant SSLOT_HYPERCORE_AUTHORIZER = bytes32( uint256(keccak256("hypercore.authorizer")) - 1 ); bytes32 constant SSLOT_HYPERCORE_ROUTINGTABLE = bytes32( uint256(keccak256("hypercore.routingTable")) - 1 ); bytes32 constant SSLOT_HYPERCORE_POOLBALANCES = bytes32( uint256(keccak256("hypercore.poolBalances")) - 1 ); bytes32 constant SSLOT_HYPERCORE_REBASEORACLES = bytes32( uint256(keccak256("hypercore.rebaseOracles")) - 1 ); bytes32 constant SSLOT_HYPERCORE_LASTBALANCES = bytes32( uint256(keccak256("hypercore.lastBalances")) - 1 ); bytes32 constant SSLOT_HYPERCORE_USERBALANCES = bytes32( uint256(keccak256("hypercore.userBalances")) - 1 ); bytes32 constant SSLOT_HYPERCORE_EMISSIONINFORMATION = bytes32( uint256(keccak256("hypercore.emissionInformation")) - 1 ); bytes32 constant SSLOT_REENTRACNYGUARD_LOCKED = bytes32( uint256(keccak256("ReentrancyGuard.locked")) - 1 ); bytes32 constant SSLOT_PAUSABLE_PAUSED = bytes32( uint256(keccak256("Pausable.paused")) - 1 ); struct VelocoreOperation { bytes32 poolId; bytes32[] tokenInformations; bytes data; } interface IVault { struct Facet { address facetAddress; bytes4[] functionSelectors; } enum FacetCutAction { Add, Replace, Remove } // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); event Swap( ISwap indexed pool, address indexed user, Token[] tokenRef, int128[] delta ); event Gauge( IGauge indexed pool, address indexed user, Token[] tokenRef, int128[] delta ); event Convert( IConverter indexed pool, address indexed user, Token[] tokenRef, int128[] delta ); event Vote(IGauge indexed pool, address indexed user, int256 voteDelta); event UserBalance( address indexed to, address indexed from, Token[] tokenRef, int128[] delta ); event BribeAttached(IGauge indexed gauge, IBribe indexed bribe); event BribeKilled(IGauge indexed gauge, IBribe indexed bribe); event GaugeKilled(IGauge indexed gauge, bool killed); function notifyInitialSupply(Token, uint128, uint128) external; function attachBribe(IGauge gauge, IBribe bribe) external; function killBribe(IGauge gauge, IBribe bribe) external; function killGauge(IGauge gauge, bool t) external; function ballotToken() external returns (Token); function emissionToken() external returns (Token); function execute( Token[] calldata tokenRef, int128[] memory deposit, VelocoreOperation[] calldata ops ) external payable; function facets() external view returns (Facet[] memory facets_); function facetFunctionSelectors( address _facet ) external view returns (bytes4[] memory facetFunctionSelectors_); function facetAddresses() external view returns (address[] memory facetAddresses_); function facetAddress( bytes4 _functionSelector ) external view returns (address facetAddress_); function query( address user, Token[] calldata tokenRef, int128[] memory deposit, VelocoreOperation[] calldata ops ) external returns (int128[] memory); function admin_setFunctions( address implementation, bytes4[] calldata sigs ) external; function admin_addFacet(IFacet implementation) external; function admin_setAuthorizer(IAuthorizer auth_) external; function admin_pause(bool t) external; function admin_setTreasury(address treasury) external; function emissionStarted() external view returns (bool); function swapExactTokensForTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapTokensForExactTokens( uint256 amountOut, uint256 amountInMax, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapExactETHForTokens( uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external payable returns (uint256[] memory amounts); function swapTokensForExactETH( uint256 amountOut, uint256 amountInMax, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapExactTokensForETH( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapETHForExactTokens( uint256 amountOut, address[] calldata path, address to, uint256 deadline ) external payable returns (uint256[] memory amounts); function getAmountsOut( uint256 amountIn, address[] calldata path ) external returns (uint256[] memory amounts); function getAmountsIn( uint256 amountOut, address[] calldata path ) external returns (uint256[] memory amounts); function execute1( address pool, uint8 method, address t1, uint8 m1, int128 a1, bytes memory data ) external payable returns (int128[] memory); function query1( address pool, uint8 method, address t1, uint8 m1, int128 a1, bytes memory data ) external returns (int128[] memory); function execute2( address pool, uint8 method, address t1, uint8 m1, int128 a1, address t2, uint8 m2, int128 a2, bytes memory data ) external payable returns (int128[] memory); function query2( address pool, uint8 method, address t1, uint8 m1, int128 a1, address t2, uint8 m2, int128 a2, bytes memory data ) external returns (int128[] memory); function execute3( address pool, uint8 method, address t1, uint8 m1, int128 a1, address t2, uint8 m2, int128 a2, address t3, uint8 m3, int128 a3, bytes memory data ) external payable returns (int128[] memory); function query3( address pool, uint8 method, address t1, uint8 m1, int128 a1, address t2, uint8 m2, int128 a2, address t3, uint8 m3, int128 a3, bytes memory data ) external returns (int128[] memory); function getPair(address t0, address t1) external view returns (address); function allPairs(uint256 i) external view returns (address); function allPairsLength() external view returns (uint256); function getPoolBalance(address, Token) external view returns (uint256); function getGaugeBalance(address, Token) external view returns (uint256); function claimGasses(address[] memory, address) external; function removeLiquidityETH( address token, bool stable, uint256 liquidity, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) external returns (uint256 amountToken, uint256 amountETH); function deposit(address p, uint256 a) external; function withdraw(address p, uint256 a) external; function quoteRemoveLiquidity( address tokenA, address tokenB, bool stable, uint256 liquidity ) external returns (uint256 amountA, uint256 amountB); function addLiquidityETH( address tokenA, bool stable, uint256 amountADesired, uint256 amountAMin, uint256 amountETHMin, address to, uint256 deadline ) external payable returns (uint256 amountA, uint256 amountETH, uint256 liquidity); function addLiquidity( address tokenA, address tokenB, bool stable, uint256 amountADesired, uint256 amountBDesired, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external payable returns (uint256 amountA, uint256 amountB, uint256 liquidity); function quoteAddLiquidity( address tokenA, address tokenB, bool stable, uint256 amountADesired, uint256 amountBDesired ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity); function removeLiquidity( address tokenA, address tokenB, bool stable, uint256 liquidity, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external returns (uint256 amountA, uint256 amountB); }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; import "contracts/lib/PoolBalanceLib.sol"; import "contracts/lib/UncheckedMemory.sol"; import "contracts/interfaces/IVault.sol"; import "contracts/interfaces/ISwap.sol"; import "contracts/interfaces/IAuthorizer.sol"; import "contracts/VaultStorage.sol"; import "./Satellite.sol"; /** * @dev a base contract for pools. * * - holds pool-specific slot of vault's storage as an immutable value. * - provides getters for the slot. * */ abstract contract Pool is IPool, Satellite { using PoolBalanceLib for PoolBalance; using UncheckedMemory for bytes32[]; using UncheckedMemory for Token[]; address immutable selfAddr; constructor( IVault vault_, address selfAddr_, address factory ) Satellite(vault_, factory) { selfAddr = selfAddr_; } /** * pool balance is stored as two uint128; poolBalance and gaugeBalance. */ function _getPoolBalance(Token token) internal view returns (uint256) { return vault.getPoolBalance(selfAddr, token); } function _getGaugeBalance(Token token) internal view returns (uint256) { return vault.getGaugeBalance(selfAddr, token); } function _getPoolBalances( Token[] memory tokens ) internal view returns (uint256[] memory ret2) { uint256[] memory ret = new uint256[](tokens.length); for (uint256 i = 0; i < tokens.length; ++i) { ret[i] = vault.getPoolBalance(selfAddr, tokens[i]); } } function poolParams() external view virtual override returns (bytes memory) { return ""; } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; interface IPool { function poolParams() external view returns (bytes memory); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds down to infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // This check prevents values greater than 192 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than this is truncated to zero. if (xInt < -59_794705707972522261) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm. /// /// For $0 \leq x \lt 1$, the logarithm is calculated as: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm and add it to the result and finally calculate $y = x * 2^{-n}$. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // This is $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev _Available since v3.1._ */ interface IERC1155Receiver is IERC165 { /** * @dev Handles the receipt of a single ERC1155 token type. This function is * called at the end of a `safeTransferFrom` after the balance has been updated. * * NOTE: To accept the transfer, this must return * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` * (i.e. 0xf23a6e61, or its own function selector). * * @param operator The address which initiated the transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param id The ID of the token being transferred * @param value The amount of tokens being transferred * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4); /** * @dev Handles the receipt of a multiple ERC1155 token types. This function * is called at the end of a `safeBatchTransferFrom` after the balances have * been updated. * * NOTE: To accept the transfer(s), this must return * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` * (i.e. 0xbc197c81, or its own function selector). * * @param operator The address which initiated the batch transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param ids An array containing ids of each token being transferred (order and length must match values array) * @param values An array containing amounts of each token being transferred (order and length must match ids array) * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC1155/extensions/IERC1155MetadataURI.sol) pragma solidity ^0.8.0; import "../IERC1155.sol"; /** * @dev Interface of the optional ERC1155MetadataExtension interface, as defined * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP]. * * _Available since v3.1._ */ interface IERC1155MetadataURI is IERC1155 { /** * @dev Returns the URI for token type `id`. * * If the `\{id\}` substring is present in the URI, it must be replaced by * clients with the actual token type ID. */ function uri(uint256 id) external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: UNLICENSED // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform(bytes32 actionId, address account, address where) external view returns (bool); }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; interface IFacet { function initializeFacet() external; }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; interface IConverter { /** * @dev This method is called by Vault.execute(). * Vault will transfer any positively specified amounts directly to the IConverter before calling velocore__convert. * * Instead of returning balance delta numbers, IConverter is expected to directly transfer outputs back to vault. * Vault will measure the difference, and credit the user. */ function velocore__convert(address user, Token[] calldata tokens, int128[] memory amounts, bytes calldata data) external; }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; import "./IGauge.sol"; import "./IPool.sol"; interface IBribe is IPool { /** * @dev This method is called when someone vote/harvest from/to a @param gauge, * and when this IBribe happens to be attached to the gauge. * * Attachment can happen without IBribe's permission. Implementations must verify that @param gauge is correct. * * Returns balance deltas; their net differences are credited as bribe. * deltaExternal must be zero or negative; Vault will take specified amounts from the contract's balance * * @param gauge the gauge to bribe for. * @param elapsed elapsed time after last call; can be used to save gas. * @return bribeTokens list of tokens to bribe * @return deltaGauge same order as bribeTokens, the desired change of gauge balance * @return deltaPool same order as bribeTokens, the desired change of pool balance * @return deltaExternal same order as bribeTokens, the vault will pull this amount out from the bribe contract with transferFrom() */ function velocore__bribe(IGauge gauge, uint256 elapsed) external returns ( Token[] memory bribeTokens, int128[] memory deltaGauge, int128[] memory deltaPool, int128[] memory deltaExternal ); function bribeTokens(IGauge gauge) external view returns (Token[] memory); function bribeRates(IGauge gauge) external view returns (uint256[] memory); }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; import "./IPool.sol"; interface ISwap is IPool { /** * @param user the user that requested swap * @param tokens sorted, unique list of tokens that user asked to swap * @param amounts same order as tokens, requested change of token balance, positive when pool receives, negative when pool gives. type(int128).max for unknown values, for which the pool should decide. * @param data auxillary data for pool-specific uses. * @return deltaGauge same order as tokens, the desired change of gauge balance * @return deltaPool same order as bribeTokens, the desired change of pool balance */ function velocore__execute(address user, Token[] calldata tokens, int128[] memory amounts, bytes calldata data) external returns (int128[] memory, int128[] memory); function swapType() external view returns (string memory); function listedTokens() external view returns (Token[] memory); function lpTokens() external view returns (Token[] memory); function underlyingTokens(Token lp) external view returns (Token[] memory); //function spotPrice(Token token, Token base) external view returns (uint256); }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; import "contracts/interfaces/IVault.sol"; import "contracts/interfaces/IGauge.sol"; import "contracts/lib/PoolBalanceLib.sol"; import "contracts/interfaces/IGauge.sol"; import "contracts/interfaces/IBribe.sol"; import "contracts/interfaces/IAuthorizer.sol"; import "openzeppelin/utils/structs/BitMaps.sol"; import "openzeppelin/utils/StorageSlot.sol"; import "openzeppelin/utils/structs/EnumerableSet.sol"; // A base contract inherited by every facet. // Vault stores everything on named slots, in order to: // - prevent storage collision // - make information access cheaper. (see Diamond.yul) // The downside of doing that is that storage access becomes exteremely verbose; // We define large singleton structs to mitigate that. struct EmissionInformation { // a singleton struct for emission-related global data // accessed as `_e()` uint128 perVote; // (number of VC tokens ever emitted, per vote) * 1e9; monotonically increasing. uint128 totalVotes; // the current sum of votes on all pool mapping(IGauge => GaugeInformation) gauges; // per-guage informations } struct GaugeInformation { // we use `lastBribeUpdate == 1` as a special value indicating a killed gauge // note that this is updated with bribe calculation, not emission calculation, unlike perVoteAtLastEmissionUpdate uint32 lastBribeUpdate; uint112 perVoteAtLastEmissionUpdate; // // total vote on this gauge uint112 totalVotes; // mapping(address => uint256) userVotes; // // bribes are contracts; we call them to extort bribes on demand EnumerableSet.AddressSet bribes; // // for storing extorted bribes. // we track (accumulated reward / vote), per bribe contract, per token // we separately track rewards from different bribes, to contain bad-behaving bribe contracts mapping(IBribe => mapping(Token => Rewards)) rewards; } // tracks the distribution of a single token struct Rewards { // accumulated rewards per vote * 1e9 uint256 current; // `accumulated rewards per vote * 1e9` at the moment of last claim of the user mapping(address => uint256) snapshots; } struct RoutingTable { EnumerableSet.Bytes32Set sigs; mapping(address => EnumerableSet.Bytes32Set) sigsByImplementation; } contract VaultStorage { using EnumerableSet for EnumerableSet.Bytes32Set; event Swap(ISwap indexed pool, address indexed user, Token[] tokenRef, int128[] delta); event Gauge(IGauge indexed pool, address indexed user, Token[] tokenRef, int128[] delta); event Convert(IConverter indexed pool, address indexed user, Token[] tokenRef, int128[] delta); event Vote(IGauge indexed pool, address indexed user, int256 voteDelta); event UserBalance(address indexed to, address indexed from, Token[] tokenRef, int128[] delta); event BribeAttached(IGauge indexed gauge, IBribe indexed bribe); event BribeKilled(IGauge indexed gauge, IBribe indexed bribe); event GaugeKilled(IGauge indexed gauge, bool killed); enum FacetCutAction { Add, Replace, Remove } // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); function _getImplementation(bytes4 sig) internal view returns (address impl, bool readonly) { assembly ("memory-safe") { impl := sload(not(shr(0xe0, sig))) if iszero(lt(impl, 0x10000000000000000000000000000000000000000)) { readonly := 1 impl := not(impl) } } } function _setFunction(bytes4 sig, address implementation) internal { (address oldImplementation,) = _getImplementation(sig); FacetCut[] memory a = new FacetCut[](1); a[0].facetAddress = implementation; a[0].action = FacetCutAction.Add; a[0].functionSelectors = new bytes4[](1); a[0].functionSelectors[0] = sig; if (oldImplementation != address(0)) { a[0].action = FacetCutAction.Replace; } if (implementation == address(0)) a[0].action = FacetCutAction.Remove; emit DiamondCut(a, implementation, ""); assembly ("memory-safe") { sstore(not(shr(0xe0, sig)), implementation) } if (oldImplementation != address(0)) { _routingTable().sigsByImplementation[oldImplementation].remove(sig); } if (implementation == address(0)) { _routingTable().sigs.remove(sig); } else { _routingTable().sigs.add(sig); _routingTable().sigsByImplementation[implementation].add(sig); } } // viewer implementations are stored as `not(implementation)`. please refer to Diamond.yul for more information function _setViewer(bytes4 sig, address implementation) internal { (address oldImplementation,) = _getImplementation(sig); FacetCut[] memory a = new FacetCut[](1); a[0].facetAddress = implementation; a[0].action = FacetCutAction.Add; a[0].functionSelectors = new bytes4[](1); a[0].functionSelectors[0] = sig; if (oldImplementation != address(0)) { a[0].action = FacetCutAction.Replace; } if (implementation == address(0)) a[0].action = FacetCutAction.Remove; emit DiamondCut(a, implementation, ""); assembly ("memory-safe") { sstore(not(shr(0xe0, sig)), not(implementation)) } if (oldImplementation != address(0)) { _routingTable().sigsByImplementation[oldImplementation].remove(sig); } if (implementation == address(0)) { _routingTable().sigs.remove(sig); } else { _routingTable().sigs.add(sig); _routingTable().sigsByImplementation[implementation].add(sig); } } function _routingTable() internal pure returns (RoutingTable storage ret) { bytes32 slot = SSLOT_HYPERCORE_ROUTINGTABLE; assembly ("memory-safe") { ret.slot := slot } } // each pool has two accounts of balance: gauge balance and pool balance; both are uint128. // they are stored in a wrapped bytes32, PoolBalance // the only difference between them is that new emissions are credited into the gauge balance. // the pool can use them in any way they want. function _poolBalances() internal pure returns (mapping(IPool => mapping(Token => PoolBalance)) storage ret) { bytes32 slot = SSLOT_HYPERCORE_POOLBALANCES; assembly ("memory-safe") { ret.slot := slot } } function _e() internal pure returns (EmissionInformation storage ret) { bytes32 slot = SSLOT_HYPERCORE_EMISSIONINFORMATION; assembly ("memory-safe") { ret.slot := slot } } // users can also store tokens directly in the vault; their balances are tracked separately. function _userBalances() internal pure returns (mapping(address => mapping(Token => uint256)) storage ret) { bytes32 slot = SSLOT_HYPERCORE_USERBALANCES; assembly ("memory-safe") { ret.slot := slot } } modifier nonReentrant() { require(StorageSlot.getUint256Slot(SSLOT_REENTRACNYGUARD_LOCKED).value < 2, "REENTRANCY"); StorageSlot.getUint256Slot(SSLOT_REENTRACNYGUARD_LOCKED).value = 2; _; StorageSlot.getUint256Slot(SSLOT_REENTRACNYGUARD_LOCKED).value = 1; } modifier whenNotPaused() { require(StorageSlot.getUint256Slot(SSLOT_PAUSABLE_PAUSED).value == 0, "PAUSED"); _; } // this contract delegates access control to another contract, IAuthenticator. // this design was inspired by Balancer. // actionId is a function of method signature and contract address modifier authenticate() { authenticateCaller(); _; } function authenticateCaller() internal { bytes32 actionId = keccak256(abi.encodePacked(bytes32(uint256(uint160(address(this)))), msg.sig)); require( IAuthorizer(StorageSlot.getAddressSlot(SSLOT_HYPERCORE_AUTHORIZER).value).canPerform( actionId, msg.sender, address(this) ), "unauthorized" ); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import "contracts/interfaces/IVault.sol"; import "contracts/Common.sol"; /** * @dev a base contract for peripheral contracts. * * 1. delegates access control to the vault * 2. use Diamond.yul's 'read' intrinsic function to read its storages * */ contract Satellite is Common { IVault immutable vault; address public immutable factory; constructor(IVault vault_, address factory_) { vault = vault_; factory = factory_; } modifier onlyVault() { require(msg.sender == address(vault), "only vault"); _; } function _readVaultStorage(bytes32 slot) internal view returns (bytes32 ret) { address vaultAddress = address(vault); assembly ("memory-safe") { mstore(0, 0x7265616400000000000000000000000000000000000000000000000000000000) mstore(4, slot) let success := staticcall(gas(), vaultAddress, 0, 36, 0, 32) if iszero(success) { revert(0, 0) } ret := mload(0) } } modifier authenticate() { require( IAuthorizer(address(uint160(uint256(_readVaultStorage(SSLOT_HYPERCORE_AUTHORIZER))))).canPerform( keccak256(abi.encodePacked(bytes32(uint256(uint160(factory))), msg.sig)), msg.sender, address(this) ), "unauthorized" ); _; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and hte intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/BitMaps.sol) pragma solidity ^0.8.0; /** * @dev Library for managing uint256 to bool mapping in a compact and efficient way, providing the keys are sequential. * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor]. */ library BitMaps { struct BitMap { mapping(uint256 => uint256) _data; } /** * @dev Returns whether the bit at `index` is set. */ function get(BitMap storage bitmap, uint256 index) internal view returns (bool) { uint256 bucket = index >> 8; uint256 mask = 1 << (index & 0xff); return bitmap._data[bucket] & mask != 0; } /** * @dev Sets the bit at `index` to the boolean `value`. */ function setTo( BitMap storage bitmap, uint256 index, bool value ) internal { if (value) { set(bitmap, index); } else { unset(bitmap, index); } } /** * @dev Sets the bit at `index`. */ function set(BitMap storage bitmap, uint256 index) internal { uint256 bucket = index >> 8; uint256 mask = 1 << (index & 0xff); bitmap._data[bucket] |= mask; } /** * @dev Unsets the bit at `index`. */ function unset(BitMap storage bitmap, uint256 index) internal { uint256 bucket = index >> 8; uint256 mask = 1 << (index & 0xff); bitmap._data[bucket] &= ~mask; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol) pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import "contracts/blast/IBLAST.sol"; contract Common { address constant governor = 0x65432138ae74065Aeb3Bd71aEaC887CCAE0E32a4; constructor() { BLAST.configureClaimableGas(); BLAST.configureGovernor(governor); } }
IBlast constant BLAST = IBlast(0x4300000000000000000000000000000000000002); interface IBlast { enum GasMode { VOID, CLAIMABLE } enum YieldMode { AUTOMATIC, VOID, CLAIMABLE } // configure function configureContract( address contractAddress, YieldMode _yield, GasMode gasMode, address governor ) external; function configure( YieldMode _yield, GasMode gasMode, address governor ) external; // base configuration options function configureClaimableYield() external; function configureClaimableYieldOnBehalf(address contractAddress) external; function configureAutomaticYield() external; function configureAutomaticYieldOnBehalf(address contractAddress) external; function configureVoidYield() external; function configureVoidYieldOnBehalf(address contractAddress) external; function configureClaimableGas() external; function configureClaimableGasOnBehalf(address contractAddress) external; function configureVoidGas() external; function configureVoidGasOnBehalf(address contractAddress) external; function configureGovernor(address _governor) external; function configureGovernorOnBehalf( address _newGovernor, address contractAddress ) external; // claim yield function claimYield( address contractAddress, address recipientOfYield, uint256 amount ) external returns (uint256); function claimAllYield( address contractAddress, address recipientOfYield ) external returns (uint256); // claim gas function claimAllGas( address contractAddress, address recipientOfGas ) external returns (uint256); function claimGasAtMinClaimRate( address contractAddress, address recipientOfGas, uint256 minClaimRateBips ) external returns (uint256); function claimMaxGas( address contractAddress, address recipientOfGas ) external returns (uint256); function claimGas( address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume ) external returns (uint256); // read functions function readClaimableYield( address contractAddress ) external view returns (uint256); function readYieldConfiguration( address contractAddress ) external view returns (uint8); function readGasParams( address contractAddress ) external view returns ( uint256 etherSeconds, uint256 etherBalance, uint256 lastUpdated, GasMode ); }
{ "remappings": [ "@prb/test/=lib/prb-math/lib/prb-test/src/", "ds-test/=lib/solmate/lib/ds-test/src/", "forge-std/=lib/forge-std/src/", "openzeppelin/=lib/openzeppelin-contracts/contracts/", "openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@prb/math/=lib/prb-math/", "prb-test/=lib/prb-math/lib/prb-test/src/", "solmate/=lib/solmate/src/", "lzapp/=lib/solidity-examples/contracts/", "LayerZero/=lib/LayerZero/contracts/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "prb-math/=lib/prb-math/src/", "solidity-examples/=lib/solidity-examples/contracts/" ], "optimizer": { "enabled": true, "runs": 50 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": true, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract IVault","name":"vault_","type":"address"},{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"Token","name":"t0","type":"bytes32"},{"internalType":"Token","name":"t1","type":"bytes32"},{"internalType":"uint32","name":"fee1e9_","type":"uint32"},{"internalType":"uint32","name":"decay","type":"uint32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Log_InputTooSmall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Burn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"decay","type":"uint256"}],"name":"DecayChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"fee1e18","type":"uint256"}],"name":"FeeChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Mint","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount0Out","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1Out","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint112","name":"reserve0","type":"uint112"},{"indexed":false,"internalType":"uint112","name":"reserve1","type":"uint112"}],"name":"Sync","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IGauge","name":"gauge","type":"address"}],"name":"bribeRates","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IGauge","name":"gauge","type":"address"}],"name":"bribeTokens","outputs":[{"internalType":"Token[]","name":"","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decayRate","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_spender","type":"address"},{"internalType":"uint256","name":"_subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"emissionShare","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fee1e9","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeMultiplier","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLogYieldEMA","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getReserves","outputs":[{"internalType":"int256","name":"","type":"int256"},{"internalType":"int256","name":"","type":"int256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_spender","type":"address"},{"internalType":"uint256","name":"_addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"index","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastWithdrawTimestamp","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"listedTokens","outputs":[{"internalType":"Token[]","name":"","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lpTokens","outputs":[{"internalType":"Token[]","name":"ret","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"naturalBribes","outputs":[{"internalType":"Token[]","name":"","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolBalances","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolParams","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"relevantTokens","outputs":[{"internalType":"Token[]","name":"","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"decayRate_","type":"uint256"}],"name":"setDecay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"fee1e9_","type":"uint256"},{"internalType":"uint256","name":"decayRate_","type":"uint256"}],"name":"setFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setFeeToZero","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stake","outputs":[{"internalType":"Token","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakeableTokens","outputs":[{"internalType":"Token[]","name":"","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"stakedTokens","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakedTokens","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"swapType","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token0","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token1","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"Token","name":"tok","type":"bytes32"}],"name":"underlyingTokens","outputs":[{"internalType":"Token[]","name":"","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IGauge","name":"gauge","type":"address"},{"internalType":"uint256","name":"elapsed","type":"uint256"}],"name":"velocore__bribe","outputs":[{"internalType":"Token[]","name":"bribeTokens","type":"bytes32[]"},{"internalType":"int128[]","name":"deltaGauge","type":"int128[]"},{"internalType":"int128[]","name":"deltaPool","type":"int128[]"},{"internalType":"int128[]","name":"deltaExternal","type":"int128[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newEmissions","type":"uint256"}],"name":"velocore__emission","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"Token[]","name":"t","type":"bytes32[]"},{"internalType":"int128[]","name":"r","type":"int128[]"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"velocore__execute","outputs":[{"internalType":"int128[]","name":"deltaGauge","type":"int128[]"},{"internalType":"int128[]","name":"deltaPool","type":"int128[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"Token[]","name":"tokens","type":"bytes32[]"},{"internalType":"int128[]","name":"amounts","type":"int128[]"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"velocore__gauge","outputs":[{"internalType":"int128[]","name":"deltaGauge","type":"int128[]"},{"internalType":"int128[]","name":"deltaPool","type":"int128[]"}],"stateMutability":"nonpayable","type":"function"}]
Deployed Bytecode
0x6080604052600436101561001257600080fd5b60003560e01c806306fdde03146102c75780630902f1ac146102c2578063095ea7b3146102bd5780630b1150de146102b85780630dfe1681146102b3578063165cad8d146102ae57806318160ddd146102a957806319706b38146102a457806320e5fe3e1461029f57806323b872dd1461029a578063282b4c86146102955780632986c0e514610290578063313ce5671461028b57806334c0b46b14610286578063376fc5bf1461028157806338706d1f1461027c57806339509351146102775780633a4b66f114610272578063412330bc1461026d57806348313a81146102685780634a3d6bda1461026357806352f7c9881461025e57806369fa25c4146102595780636b35b93d1461025457806370a082311461024f578063781c38001461024a57806395d89b41146102455780639acaa0f4146102405780639c77ac511461023b578063a457c2d714610236578063a5b39cfb14610231578063a9059cbb1461022c578063a9c1f2f114610227578063b3331de414610222578063c45a01551461021d578063cb62900914610218578063ce98f8aa14610213578063d21220a71461020e578063dd62ed3e14610209578063e5a70ef714610204578063ec378808146101ff578063f38a02d0146101fa5763ff7bd55b146101f557600080fd5b6117a1565b61174a565b6116e8565b6116c7565b611638565b61161d565b6115ed565b6115b3565b61156e565b611553565b61152f565b6114b2565b611469565b61141f565b6113f8565b61137f565b6112bc565b611204565b6111dd565b61117e565b61112e565b61102b565b61100f565b610fe9565b610ed7565b610e61565b610e06565b610dea565b610c5d565b610bd7565b610b99565b610b7b565b610b54565b610a40565b61080c565b6105f4565b6105d1565b61058c565b61055f565b610526565b6104ac565b61046d565b61035c565b634e487b7160e01b600052604160045260246000fd5b90601f801991011681019081106001600160401b0382111761030357604052565b6102cc565b919082519283825260005b848110610334575050826000602080949584010152601f8019910116010190565b602081830181015184830182015201610313565b906020610359928181520190610308565b90565b34610468576000806003193601126104655760405190806002549060019180831c9280821692831561045b575b602092838610851461044757858852602088019490811561042657506001146103cd575b6103c9876103bd818903826102e2565b60405191829182610348565b0390f35b600260005294509192917f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace5b83861061041557505050910190506103bd826103c938806103ad565b8054858701529482019481016103f9565b60ff191685525050505090151560051b0190506103bd826103c938806103ad565b634e487b7160e01b82526022600452602482fd5b93607f1693610389565b80fd5b600080fd5b34610468576000366003190112610468576060610488612ca1565b9060405192835260208301526040820152f35b6001600160a01b0381160361046857565b346104685760403660031901126104685760206104d76004356104ce8161049b565b60243590611a8a565b6040519015158152f35b90815180825260208080930193019160005b828110610501575050505090565b8351855293810193928101926001016104f3565b9060206103599281815201906104e1565b34610468576020366003190112610468573060043503610468576103c961054b6134b7565b6040519182916020835260208301906104e1565b3461046857600036600319011261046857602061057a611d1c565b6040516001600160a01b039091168152f35b3461046857600036600319011261046857602060005260016020527f000000000000000000000000b3ca46e0675d6925df5b4740a6bd0a7bf5bb57c160405260606000f35b346104685760003660031901126104685760206105ec611a6c565b604051908152f35b346104685760003660031901126104685761060d613352565b80511561067457600160208201528051600110156106745780600160406103c99301526103bd61065463ffffffff61064e60065463ffffffff9060201c1690565b16611dac565b6106666040519384926020840161350e565b03601f1981018352826102e2565b61338d565b6001600160401b0381116103035760051b60200190565b81601f82011215610468578035916106a783610679565b926106b560405194856102e2565b808452602092838086019260051b820101928311610468578301905b8282106106df575050505090565b813580600f0b81036104685781529083019083016106d1565b9181601f84011215610468578235916001600160401b038311610468576020838186019501011161046857565b60806003198201126104685760043561073d8161049b565b91602435916001600160401b0391828411610468578160238501121561046857836004013593838511610468578260248660051b83010111610468576024019392604435818111610468578361079591600401610690565b92606435918211610468576107ac916004016106f8565b9091565b90815180825260208080930193019160005b8281106107d0575050505090565b8351600f0b855293810193928101926001016107c2565b90916107fe610359936040845260408401906107b0565b9160208184039101526107b0565b34610468576109b061081d36610725565b5092949193919250610859337f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c6001600160a01b031614611aee565b61086284611bb2565b9361096c6108c661087283611bb2565b9761089e7f000000000000000000000000b3ca46e0675d6925df5b4740a6bd0a7bf5bb57c18583611c1d565b937f000000000000000000000000d1fedd031b92f50a50c05e2c45af1adb4cea82f491611c1d565b61095f61095661095061094461093061090a6108e960005460018060801b031690565b6108fc6108f58d6118aa565b5460801c90565b90036001600160801b031690565b6109236109168c6118aa565b546001600160801b031690565b026001600160801b031690565b633b9aca006001600160801b039091160490565b6001600160801b031690565b600f0b90565b600003600f0b90565b90879060010160051b0152565b600181016109bf575b505060005461098d906001600160801b0316916118aa565b80546001600160801b031660809290921b6001600160801b031916919091179055565b6103c9604051928392836107e7565b610a3991610a2b610a036109fe6109f96109de6109446109168a6118aa565b946001870160051b01946109f38651600f0b90565b90611c01565b6137e2565b6137c9565b610a0c866118aa565b80546001600160801b0319166001600160801b03909216919091179055565b5190859060010160051b0152565b3880610975565b3461046857606036600319011261046857600435610a5d8161049b565b602435610a698161049b565b604435906000805160206139b3833981519152906001600160a01b03907f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c82163303610af5575b610ab9856118c4565b610ac4858254611a5f565b9055610acf816118c4565b805485019055604051938452811693169180602081015b0390a360405160018152602090f35b8185166000526005602052610b0e3360406000206118de565b548460018201610b20575b5050610ab0565b610b2991611a5f565b6001600160a01b0386166000908152600560205260409020610b4c9033906118de565b553884610b19565b346104685760203660031901126104685760206105ec600435610b768161049b565b611cb6565b34610468576000366003190112610468576020600754604051908152f35b3461046857600036600319011261046857602060405160ff7f0000000000000000000000000000000000000000000000000000000000000012168152f35b3461046857600036600319011261046857610bf0611b88565b805115610674576103c9903060208201526040519182916020835260208301906104e1565b92610c416103599593610c33610c4f946080885260808801906104e1565b9086820360208801526107b0565b9084820360408601526107b0565b9160608184039101526107b0565b3461046857604036600319011261046857600435610c7a8161049b565b6001600160a01b03907f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c821690610cc190610cb6338414611aee565b6060931630146121e1565b30610cca6133a3565b52610cd3611b88565b91610cdc611b88565b9160046020610ce9611b88565b92604051928380926313c716cd60e21b82525afa908115610de557600091610db7575b50610d23575b6103c9919260405194859485610c15565b6103c99150610d83610d7d610d5c610d57602435610d52610d4960065463ffffffff1690565b63ffffffff1690565b611f9e565b611a4d565b610d78610d6f610d6a61356a565b611dc5565b60075490611b3d565b611de2565b60201c90565b92610daf610da8610da3610d9e610d98611b88565b97613841565b613831565b613552565b8260200152565b929150610d12565b610dd8915060203d8111610dde575b610dd081836102e2565b8101906120e0565b38610d0c565b503d610dc6565b611992565b34610468576000366003190112610468576103c961054b6133c4565b3461046857604036600319011261046857600435610e238161049b565b336000526005602052610e3a8160406000206118de565b546024358101809111610e5c57610e5091611a8a565b50602060405160018152f35b611a37565b346104685760003660031901126104685760206040517f000000000000000000000000b3ca46e0675d6925df5b4740a6bd0a7bf5bb57c18152f35b6020604081830192828152606051809452019160809160005b828110610ec3575050505090565b835185529381019392810192600101610eb5565b346104685760008060031936011261046557610ef16133c4565b610efb8151611bb2565b7f000000000000000000000000b3ca46e0675d6925df5b4740a6bd0a7bf5bb57c1927f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c6001600160a01b031690805b8451811015610fdc5780610f61610f8192876133b0565b5160405190633d44217960e21b8252818060209586938c60048401611977565b0381885afa908115610de557610faa938592610faf575b5050610fa482876133b0565b5261337e565b610f4a565b610fce9250803d10610fd5575b610fc681836102e2565b810190611968565b3880610f98565b503d610fbc565b604051806103c981610e9c565b3461046857600036600319011261046857602060065463ffffffff60405191831c168152f35b34610468576000366003190112610468576103c961054b6134b7565b34610468576040366003190112610468576110e76020611061611055611055611055611055612175565b6001600160a01b031690565b6040517f00000000000000000000000075cb3ec310d3d1e22637f79d61eab5d9abcd68bd6001600160a01b03168382019081526000356001600160e01b0319166020820152906110b48160248401610666565b5190206040516326f8aa2160e21b8152600481019190915233602482015230604482015292839190829081906064820190565b03915afa8015610de55761110391600091611110575b506120f8565b61110e6004356121e8565b005b611128915060203d8111610dde57610dd081836102e2565b386110fd565b34610468576020366003190112610468576111586020611061611055611055611055611055612175565b03915afa8015610de5576111739160009161111057506120f8565b61110e600435612133565b34610468576000366003190112610468576111c3337f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c6001600160a01b031614611aee565b600680546fffffffffffffffff00000000ffffffff169055005b346104685760203660031901126104685760206105ec6004356111ff8161049b565b6118f5565b346104685760203660031901126104685760043561124c337f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c6001600160a01b031614611aee565b8061125357005b61127c7f000000000000000000000000b3ca46e0675d6925df5b4740a6bd0a7bf5bb57c1611b47565b908115801561128757005b6112b757633b9aca00906000549260018060801b0392839202041681831601169060018060801b03191617600055005b611b27565b34610468576000806003193601126104655760405190806003549060019180831c92808216928315611375575b6020928386108514610447578588526020880194908115610426575060011461131c576103c9876103bd818903826102e2565b600360005294509192917fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b83861061136457505050910190506103bd826103c938806103ad565b805485870152948201948101611348565b93607f16936112e9565b346104685760203660031901126104685760043561139c8161049b565b6000906001600160a01b031630036113f35750670de0b6b3a76400006113c061356a565b0260075480156112b75763ffffffff60065416600160201b0391040260201c5b6020600052600160205260405260606000f35b6113e0565b3461046857600036600319011261046857602060065463ffffffff6040519160401c168152f35b346104685760403660031901126104685760043561143c8161049b565b3360005260056020526114538160406000206118de565b546024358103908111610e5c57610e5091611a8a565b34610468576020366003190112610468576004356114868161049b565b60018060a01b0316600052600160205260018060801b0360406000205416602060005260405260606000f35b34610468576040366003190112610468576004356114cf8161049b565b602435903360005260046020526040600020805490838203918211610e5c575560018060a01b03169081600052600460205260406000208181540190556000805160206139b383398151915260405180610ae63394829190602083019252565b3461046857600036600319011261046857602063ffffffff60065416604051908152f35b346104685760003660031901126104685760206105ec611ed2565b34610468576000366003190112610468576040517f00000000000000000000000075cb3ec310d3d1e22637f79d61eab5d9abcd68bd6001600160a01b03168152602090f35b34610468576000366003190112610468576113e07f000000000000000000000000b3ca46e0675d6925df5b4740a6bd0a7bf5bb57c1611b47565b346104685760203660031901126104685761160960043561049b565b602060005260016020523060405260606000f35b3461046857600036600319011261046857602061057a611d64565b34610468576040366003190112610468576004356116558161049b565b602435906116628261049b565b6000916001600160a01b03918282167f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c8416036116aa57505050506020600019604051908152f35b6020936116c19360409216815260058552206118de565b546105ec565b3461046857600036600319011261046857602060065460801c604051908152f35b346104685761173a6116f936610725565b5090939192919050611735337f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c6001600160a01b031614611aee565b6122cc565b906103c9604051928392836107e7565b346104685760003660031901126104685760405160408101908082106001600160401b03831117610303576103c991604052600481526363706d6d60e01b6020820152604051918291602083526020830190610308565b34610468576000806003193601126104655760405163251eb5ed60e11b81529080826004817f000000000000000000000000b3ca46e0675d6925df5b4740a6bd0a7bf5bb57c16001600160a01b03165afa908115610de557809161180e575b604051806103c98482610515565b90503d8082843e61181f81846102e2565b820160209283818303126118a2578051906001600160401b0382116118a6570181601f820112156118a25780519061185682610679565b9361186460405195866102e2565b828552858086019360051b83010193841161046557508401905b828210611893575050506103c9915038611800565b8151815290840190840161187e565b8280fd5b8380fd5b6001600160a01b0316600090815260016020526040902090565b6001600160a01b0316600090815260046020526040902090565b9060018060a01b0316600052602052604060002090565b6001600160a01b03907f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c821633811415908161195c575b5061193f5761193b91506118c4565b5490565b1660005260046020526040600020546119573061199e565b900390565b9050828216143861192c565b90816020910312610468575190565b6001600160a01b039091168152602081019190915260400190565b6040513d6000823e3d90fd5b60206119df9160405180938192633d44217960e21b83527f000000000000000000000000b3ca46e0675d6925df5b4740a6bd0a7bf5bb57c160048401611977565b03817f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c6001600160a01b03165afa908115610de557600091611a1f575090565b610359915060203d8111610fd557610fc681836102e2565b634e487b7160e01b600052601160045260246000fd5b90600160201b918203918211610e5c57565b91908203918211610e5c57565b611a753061199e565b6001600160701b03908103908111610e5c5790565b33600052600560205281611aa28260406000206118de565b556040519182526001600160a01b03169033907f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92590602090a3600190565b9060018201809211610e5c57565b15611af557565b60405162461bcd60e51b815260206004820152600a6024820152691bdb9b1e481d985d5b1d60b21b6044820152606490fd5b634e487b7160e01b600052601260045260246000fd5b81156112b7570490565b60206119df916040518093819263ebd8189f60e01b83527f000000000000000000000000b3ca46e0675d6925df5b4740a6bd0a7bf5bb57c160048401611977565b60405190604082018281106001600160401b03821117610303576040526001825260203681840137565b90611bbc82610679565b611bc960405191826102e2565b8281528092611bda601f1991610679565b0190602036910137565b9060018201916000600184129112908015821691151617610e5c57565b91909160008382019384129112908015821691151617610e5c57565b90918215611cad5760009060001993848101908111610e5c5793929193905b81851115611c4c57505050905090565b6001858303811c860180968160051b860135848114600014611c7357505050505050505090565b87985093809596979192939410600014611c94575050015b93929190611c3c565b925093508015611ca5570191611c8b565b505050505090565b50505060001990565b611cdf7f000000000000000000000000b3ca46e0675d6925df5b4740a6bd0a7bf5bb57c1611b47565b908115611d15576001600160a01b03166000908152600160205260409020546001600160801b0316670de0b6b3a7640000020490565b5050600090565b7f000000000000000000000000d1fedd031b92f50a50c05e2c45af1adb4cea82f473eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee810361105557506004604360981b0190565b7f000000000000000000000000f8f2ab7c84cdb6ccaf1f699eb54ba30c36b95d8573eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee810361105557506004604360981b0190565b90633b9aca0091828102928184041490151715610e5c57565b90670de0b6b3a764000091828102928184041490151715610e5c57565b81810292918115918404141715610e5c57565b90676765c793fa10079d601b1b91828102928184051490151715610e5c57565b90670de0b6b3a764000091828102928184051490151715610e5c57565b818102929160008212600160ff1b821416610e5c578184051490151715610e5c57565b90676765c793fa10079d601b1b60008382039312818412811691841390151617610e5c57565b90670de0b6b3a764000060008382039312818412811691841390151617610e5c57565b81810392916000138015828513169184121617610e5c57565b81156112b757600160ff1b8114600019831416610e5c570590565b611edd610d6a613460565b611ee5611a6c565b60028101809111610e5c5780156112b757611f009104613841565b60065460601c63ffffffff16428103611f1b57505060095490565b610359916109f3611f7383611f6d611f66611f52611f4d611f47611f42611f8d9a42611a5f565b61203a565b97611df5565b6138c7565b611f60611f4d600854611df5565b90611e9e565b9142611a5f565b90611eb7565b611f88611f8284600954611e32565b93611e55565b611e32565b676765c793fa10079d601b1b900590565b90919080156120265760018381161561201b5781935b811c805b611fc2575050505b565b82800292808404036104685763800000009283810190811061046857602090811c93838316611ff6575b5050811c80611fb8565b848793970292858404141585151516610468578201918210610468571c933880611fec565b600160201b93611fb4565b50901561203257600090565b600160201b90565b906b033b2ad6d379451d40331f576001808416156120ce5781935b811c805b61206257505050565b8280029280840403610468576b019d971e4fe8401e740000009283810190811061046857676765c793fa10079d601b1b809104938383166120a8575b5050811c80612059565b84879293970291858304141585151516610468578101908110610468570493388061209e565b676765c793fa10079d601b1b93612055565b90816020910312610468575180151581036104685790565b156120ff57565b60405162461bcd60e51b815260206004820152600c60248201526b1d5b985d5d1a1bdc9a5e995960a21b6044820152606490fd5b602063ffffffff7f78e0b45656b8fb6065c79a36aeaf92fbf473dc06966bb96e5fe995247e88750392168063ffffffff196006541617600655604051908152a1565b631c99585960e21b60009081527f0ebf818546cf436ba3e823ca878b84c3d55a00f566d51f4b07ec1ab90533db4e6004526020816024817f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c6001600160a01b03165afa15610465575190565b1561046857565b600654906305f5e1009163ffffffff9183838360201c16116104685763ffffffff60201b9060201b169063ffffffff60201b1916178060065560201c16818102918183041490151715610e5c5760207f6bbc57480a46553fa4d156ce702beef5f3ad66303b0ed1a5d4cb44966c6584c391604051908152a1565b929161226d82610679565b9161227b60405193846102e2565b829481845260208094019160051b810192831161046857905b8282106122a15750505050565b81358152908301908301612294565b6001600160801b039182169082160290811691908203610e5c57565b939291612338906122dc81611bb2565b936122e682611bb2565b9661233e6122f2612ca1565b50604080516001600160701b03848116825283166020820152919792917f1c411e9a96e071241c2f21f7726b17ae89e3cab4c78be50e062b03a9fffbbad19190a1611be4565b94611be4565b9261235260065463ffffffff9060401c1690565b63ffffffff42911603612b99575b6040516313c716cd60e21b81526020816004817f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c6001600160a01b03165afa908115610de557600091612b7a575b5015612aae575b6003810361276d5794612420612536966124176123d3368386612262565b917f0000000000000000000000000000000000000000000000000000000000000000946001860160051b809401513014918261270f575b826126b1575b50506121e1565b840151600f0b90565b92897f0000000000000000000000000000000000000000000000000000000000000001966124576001890160051b840151600f0b90565b9661248c7f0000000000000000000000000000000000000000000000000000000000000002946001860160051b0151600f0b90565b60016001607f1b038881146125bf5789811461253a57505061251b926124ee612531969593612505938b6124cb6124c68d60075490611e32565b612bc6565b916124e861094460065463ffffffff8160801c9160201c166122b0565b93612f20565b995b6124f98a613831565b919060010160051b0152565b61250e88613831565b908c9060010160051b0152565b61252484613831565b908a9060010160051b0152565b6130d4565b9190565b90999850891461258f5761251b92612589612531969593612505938c6125666124c68d60075490611e32565b9161258361094460065463ffffffff8160801c9160201c166122b0565b93612cff565b986124f0565b61251b9298506125b7612531959492612505926125b16124c66007548c611e32565b91613022565b9990986124f0565b819a9850808a92939a14808015906126a7575b6125db906121e1565b1561264557505061251b9261263f612636612631858561260c8e6126076125319d9c9a6125059a611e32565b611eb7565b809e5b61262b61094460065463ffffffff8160801c9160201c166122b0565b93612f2f565b611e15565b60075490612c33565b976124f0565b9098911461266c575b61251b9261263f6126366126316125319897958d8d6125059761260f565b87985061251b9261263f61263661263185856126956125319b9a988f6125059961260791611e32565b9e50955095979850505050925061264e565b50838214156125d2565b6126bd92503691612262565b60017f00000000000000000000000000000000000000000000000000000000000000020160051b01517f000000000000000000000000f8f2ab7c84cdb6ccaf1f699eb54ba30c36b95d85143880612410565b915061271c368383612262565b60017f00000000000000000000000000000000000000000000000000000000000000010160051b01517f000000000000000000000000d1fedd031b92f50a50c05e2c45af1adb4cea82f4149161240a565b9293919260028103612a7157602084015160408501516127a29160016001607f1b03600f91820b81149290910b1414156121e1565b6002906002966002926127c06127b9368585612262565b6020015190565b3081036129fc5750506127db6127e2916000935b3691612262565b6040015190565b308103612956575050612536956001935b60028503612943576000965b87600284036129315760005b976002860361291f57506000985b8960016001607f1b0382036128cd575050506126316128549289896126369461262b61094460065463ffffffff8160801c9160201c166122b0565b935b600281146128bd5761286b9061250e86613831565b600281146128ad5761288d9061288086613831565b908b9060010160051b0152565b600281146128a2576125319061252486613831565b5061253184156121e1565b506128b884156121e1565b61288d565b506128c884156121e1565b61286b565b9799919790919060016001607f1b03810361290057505090876124cb6124c66128fa959460075490611e32565b95612856565b909998506125666124c661291995949360075490611e32565b94612856565b6001860160051b0151600f0b98612819565b6001840160051b880151600f0b61280b565b6001850160051b860151600f0b966127ff565b9093907f000000000000000000000000d1fedd031b92f50a50c05e2c45af1adb4cea82f4810361298e575061253696506001906127f3565b9091507f000000000000000000000000f8f2ab7c84cdb6ccaf1f699eb54ba30c36b95d85036129c357612536956001916127f3565b60405162461bcd60e51b81526020600482015260116024820152703ab739bab83837b93a32b2103a37b5b2b760791b6044820152606490fd5b929890927f000000000000000000000000d1fedd031b92f50a50c05e2c45af1adb4cea82f48103612a385750506127db6127e2916000996127d4565b909893507f000000000000000000000000f8f2ab7c84cdb6ccaf1f699eb54ba30c36b95d85036129c3576127db6127e2916000946127d4565b60405162461bcd60e51b81526020600482015260156024820152743ab739bab83837b93a32b21037b832b930ba34b7b760591b6044820152606490fd5b612b07612add612ad8612ac2610d6a613460565b612ad2612acd611a6c565b611ae0565b90611b3d565b613841565b600654612af29060601c63ffffffff16610d49565b4281141580612b6e575b612b0c575b50600755565b6123b5565b612b3c611f8d826109f3611f73612b29611f42612b419742611a5f565b92611f6d611f66611f52611f4d8b611df5565b600955565b612b4a81600855565b6006805463ffffffff60601b19164260601b63ffffffff60601b1617905538612b01565b50816008541415612afc565b612b93915060203d602011610dde57610dd081836102e2565b386123ae565b600680546001600160801b0316621dcd6560891b179055612360565b600160ff1b8114610e5c5760000390565b60016000612bd3836138b6565b921303612bed57670de0b6b3a76400006103599104613841565b80612c055750610359612c006000613841565b612bb5565b6000198101908111610e5c57670de0b6b3a7640000900460018101809111610e5c57612c0061035991613841565b612c3c816138b6565b90600080612c49856138b6565b9413911314600014612c8d5780612c665750506103596000613841565b6000198101908111610e5c5781156112b7570460018101809111610e5c5761035990613841565b81156112b75761035991612c009104613841565b612ccd612ad87f000000000000000000000000d1fedd031b92f50a50c05e2c45af1adb4cea82f461199e565b90612cfa612ad87f000000000000000000000000f8f2ab7c84cdb6ccaf1f699eb54ba30c36b95d8561199e565b904290565b90612d0f61035995949382611c01565b91612dcd565b8015612dc7576000811380600114612daf5715612d98575b80026001805b60018111612d695750600081136001600160ff1b03839004821116610e5c5760008112600160ff1b839005821216610e5c570290565b916001600160ff1b038190048111610e5c5760018316612d8f575b80029160011c612d33565b80910290612d84565b6001600160ff1b03819005811215612d2d57611a37565b506001600160ff1b03819004811115612d2d57611a37565b50600090565b9291938361035995612e05612dfe612ad8612df9612dea866137e2565b612df3896137e2565b90611de2565b613749565b9586611e9e565b90612e12600083136121e1565b612e6d8287139185831597858a8a600014612ee15792611f88612e4c611f6094612e47612e51956126078a612e5f9b9a611e32565b611e9e565b6138a8565b670de0b6b3a7640000900590565b612e6884612d15565b612c33565b9415612e9d5750612e9783611f88612e4c6109f39695612e47611f6d966126078b612e479d611e32565b91611e7b565b94929394612eaf575b50505050611e9e565b612e9784611f88612e4c612ed26109f397612607612ed89b9a98611f6d98611e32565b88611e9e565b38808381612ea6565b9190821215612ef3575b505050612e5f565b612f189392611f88612e4c612f12611f6095612607612e51968d611e32565b86611e9e565b858838612eeb565b612d0f61035995949382611c01565b929061035994612f4c612f45611f609587611c01565b9383611c01565b91612f60612ad8612df96109f9848a611e32565b9584612f6d85899761343f565b9182871380612fc05750612e4c611f6094612e47856126078a612fb488611f608f612fba9f9e611f88612e4c612e519f9d839f611f889f612607612e4792612e5198611e32565b9c611e32565b9061343f565b96929493919596612fd6575b505050505061343f565b612e4c612f128461260787956130116130179b611f60612e518d9f9d9c611f88612e4c611f609f612e519f612607611f889f612f1293611e32565b9b611e32565b903880858180612fcc565b9092916000808213156130ce57506001915b613049613040826137e2565b612df3876137e2565b613052816135fd565b9060038510156130b85761309e612e6893612e68612c00613096612c0096899660016103599c1490816130ac575b50600090156130a4575060ff60015b1601613841565b978893611e32565b96611e32565b60ff9061308f565b90508180021038613080565b634e487b7160e01b600052602160045260246000fd5b91613034565b9092909160008085131561319d57509261317892610944927fdccd412f0b1252819cb1fd330b93224ca42612892bb3f4f789976e6d8193649661312261311c611fc098612bb5565b92612bb5565b6040805193845260208401919091526001600160a01b0393909316928392a361314a81613308565b612ad261317261316261315b613460565b9384611a5f565b92610d7861094460065460801c90565b916135ec565b600680546001600160801b031660809290921b6001600160801b031916919091179055565b909290808512156131fc5750604080519384526020840192909252611fc0936131f79390926001600160a01b0392909216917f4c209b5fc8ad50758f13e2e1088ba56a560dff690a1c6fef26394f4c03821c4f91a2612bb5565b6132be565b9350839290918391829081808213156132ac5750925b82131561327457509061326f7fd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d822935b60018060a01b0316958695604051948594859094939260609260808301968352602083015260408201520152565b0390a3565b91907fd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d8229395506132a661326f91612bb5565b95613241565b9395506132b890612bb5565b94613212565b6040519081527f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c6001600160a01b0316906000906000805160206139b383398151915290602090a3565b6040519081526000907f00000000000000000000000010f6b147d51f7578f760065df7f174c3bc95382c6001600160a01b0316906000805160206139b383398151915290602090a3565b60405190606082018281106001600160401b038211176103035760405260028252604082602036910137565b6000198114610e5c5760010190565b634e487b7160e01b600052603260045260246000fd5b6060511561067457608090565b80518210156106745760209160051b010190565b604051608081018181106001600160401b0382111761030357604052600381526020810160603682373090527f000000000000000000000000d1fedd031b92f50a50c05e2c45af1adb4cea82f460408201527f000000000000000000000000f8f2ab7c84cdb6ccaf1f699eb54ba30c36b95d85606082015290565b61345b61035992612df3613455612ad8946137e2565b916137e2565b6135fd565b613468612ca1565b509060018101906000600183129112908015821691151617610e5c5760018201916000600184129112908015821691151617610e5c57612ad861345b61035993612df36134556109f9956137e2565b6134bf613352565b7f000000000000000000000000d1fedd031b92f50a50c05e2c45af1adb4cea82f460208201527f000000000000000000000000f8f2ab7c84cdb6ccaf1f699eb54ba30c36b95d85604082015290565b9060609160408101918152602092816040858094015285518094520193019160005b82811061353e575050505090565b835185529381019392810192600101613530565b600f0b60016001607f1b03198114610e5c5760000390565b613572611a6c565b60018101809111610e5c5761358c90612df36007546137e2565b806135c4575060005b61359d612ca1565b5050506135a8613460565b90808210156135b8575050600090565b8103908111610e5c5790565b6000198101908111610e5c57670de0b6b3a76400009004600181018091111561359557611a37565b806001116000146103595750600190565b8015612dc757806136d06136c96136bf6136b56136ab6136a161369761368d60016103599a6000908b60801c8061372b575b508060401c8061371e575b508060201c80613711575b508060101c80613704575b508060081c806136f7575b508060041c806136ea575b508060021c806136dd575b50821c6136d6575b811c1b613686818b611b3d565b0160011c90565b613686818a611b3d565b6136868189611b3d565b6136868188611b3d565b6136868187611b3d565b6136868186611b3d565b6136868185611b3d565b8092611b3d565b90613737565b8101613679565b6002915091019038613671565b6004915091019038613666565b600891509101903861365b565b6010915091019038613650565b6020915091019038613645565b604091509101903861363a565b9150506080903861362f565b9080821015613744575090565b905090565b613752816135fd565b906000908280021015613766575060010190565b60ff160190565b1561377457565b60405162461bcd60e51b815260206004820152602760248201527f53616665436173743a2076616c756520646f65736e27742066697420696e20316044820152663238206269747360c81b6064820152608490fd5b6001600160801b03906137de8282111561376d565b1690565b600081126137ed5790565b606460405162461bcd60e51b815260206004820152602060248201527f53616665436173743a2076616c7565206d75737420626520706f7369746976656044820152fd5b90611fc082600f0b92831461376d565b6001600160ff1b0381116138525790565b60405162461bcd60e51b815260206004820152602860248201527f53616665436173743a2076616c756520646f65736e27742066697420696e2061604482015267371034b73a191a9b60c11b6064820152608490fd5b600080821315613744575090565b60008082126138c3575090565b0390565b90670de0b6b3a76400009182811061399a5782810460018060801b03811160071b90811c906001600160401b03821160061b91821c63ffffffff811160051b90811c61ffff811160041b90811c60ff811160031b90811c91600f831160021b92831c936001968760038711811b96871c11961717171717171791848302921c93808514613993576706f05b59d3b2000094855b61396657509193505050565b808291020494671bc16d674ec80000861015613986575b821c948561395a565b8095930192821c9461397d565b5090925050565b6024906040519063036d32ef60e41b82526004820152fdfeddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa2646970667358221220eaac9e506e37c4bb32f1cd873b82632cd5213f90c7901120c31bfc7614bd465a64736f6c63430008130033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.