RFamide-related peptide-3 (RFRP-3) is a recently discovered neuropeptide that has been proposed t... more RFamide-related peptide-3 (RFRP-3) is a recently discovered neuropeptide that has been proposed to play a role in the stress response. We aimed to elucidate the role of RFRP-3 and its receptor, NPFF1R, in modulation of stress and anxiety responses. To achieve this, we developed a new NPFF1R antagonist, since our results showed that the only commercially available putative antagonist, RF9 is in fact an agonist at both NPFF1R and the kisspeptin receptor, KISS1R. We report here the identification and pharmacological characterization of GJ14, a true NPFFR antagonist. In in vivo tests of hypothalamic-pituitary-adrenal (HPA) axis function, GJ14 completely blocked RFRP-3-induced corticosterone release and neuronal activation in corticotropin-releasing hormone (CRH) neurons. Furthermore, chronic infusion of GJ14 led to anxiolytic-like behavior while RFRP-3 infusion had anxiogenic effects. Mice receiving chronic RFRP-3 infusion also had higher basal circulating corticosterone levels. These r...
Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. H... more Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. Here, we review the literature in rodents and in humans on amylin research since its discovery as a hormone about 25 years ago. Amylin is a 37-amino-acid peptide that activates its specific receptors, which are multisubunit G protein-coupled receptors resulting from the coexpression of a core receptor protein with receptor activity-modifying proteins, resulting in multiple receptor subtypes. Amylin's major role is as a glucoregulatory hormone, and it is an important regulator of energy metabolism in health and disease. Other amylin actions have also been reported, such as on the cardiovascular system or on bone. Amylin acts principally in the circumventricular organs of the central nervous system and functionally interacts with other metabolically active hormones such as cholecystokinin, leptin, and estradiol. The amylin-based peptide, pramlintide, is used clinically to treat type 1 a...
Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor... more Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory m...
Pramlintide (Symlin®), a synthetic analogue of the naturally occurring pancreatic hormone amylin,... more Pramlintide (Symlin®), a synthetic analogue of the naturally occurring pancreatic hormone amylin, is currently used with insulin in adjunctive therapy for type 1 and type 2 diabetes mellitus. Herein we report a systematic study into the effect that N-glycosylation of pramlintide has on activation of amylin receptors. A highly efficient convergent synthetic route, involving a combination of solid phase peptide synthesis and enzymatic glycosylation, delivered a library of N-glycosylated variants of pramlintide bearing either GlcNAc, the core N-glycan pentasaccharide [Man3(GlcNAc)2] or a complex biantennary glycan [(NeuAcGalGlcNAcMan)2Man(GlcNAc)2] at each of its six asparagine residues. The majority of glycosylated versions of pramlintide were potent receptor agonists, suggesting that N-glycosylation may be used as a tool to optimise the pharmacokinetic properties of pramlintide and so deliver improved therapeutic agents for the treatment of diabetes and obesity.
1-Piperidinecarboxamide, N-[2-[[5-amino-l-[[4-(4-pyridinyl)-l-piperazinyl]carbonyl]pentyl]amino]-... more 1-Piperidinecarboxamide, N-[2-[[5-amino-l-[[4-(4-pyridinyl)-l-piperazinyl]carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl) (BIBN4096BS), a calcitonin gene-related peptide (CGRP) receptor antagonist, can alleviate the symptoms of migraine and is highly selective for CGRP over adrenomedullin (AM) receptors. These receptors are heterodimers of the calcitonin receptor-like receptor (CL) and receptor activity modifying proteins (RAMPs), with the pharmacological properties determined by the RAMP subunit. BIBN4096BS-sensitive CGRP(1) receptors are CL/RAMP1, whereas BIBN4096BS-insensitive AM receptors are CL/RAMP2 or CL/RAMP3 (AM(1) and AM(2), respectively), implicating RAMP1 in conferring BIB-N4096BS sensitivity. Because calcitonin receptors [CT((a))] also interact with RAMP1 [AMY(1(a)) receptors], BIBN4096BS could also have affinity for these receptors. To test this, receptors were transfected into COS-7 cells and agonist-...
International Journal of Peptide Research and Therapeutics, 2012
ABSTRACT A chemical synthesis of the 37 residue polypeptide human amylin using microwave enhanced... more ABSTRACT A chemical synthesis of the 37 residue polypeptide human amylin using microwave enhanced solid phase peptide chemistry is described. An optimised protocol used only a single pseudoproline derivative, a chemically pure resin and single couplings of all amino acids to deliver non-oxidised amylin in high yield. Oxidation of the crude peptide to form the disulfide bond was accomplished in 20 min using 2,2′-dipyridyl disulfide in dimethyl sulphoxide giving human amylin that was fully functional in a cAMP assay.
Advances in Experimental Medicine and Biology, 2012
Receptor activity modifying protein 1 (RAMP1) forms a complex with calcitonin receptor-like recep... more Receptor activity modifying protein 1 (RAMP1) forms a complex with calcitonin receptor-like receptor (CLR) to produce the receptor for calcitonin gene-related peptide (CGRP). RAMP1 has two main roles. It facilitates the cell-surface expression of CLR. It is also essential for the binding of CGRP to the receptor. It seems likely that Y66, F93, H97 and F101, amongst other residues, form a binding site for CLR. These cluster together on the same face of the extracellular portion of RAMP1, probably close to where it enters the plasma membrane. Residues at the other end of RAMP1 are most likely to be involved in CGRP recognition, although it is currently unclear how they do this. Within this area, W74 is important for the binding of the nonpeptide antagonist, BIBN4096BS, although it does not seem to be involved in the binding of CGRP itself. It has been shown that there is an epitope within residues 23-60 of CLR that are essential for RAMP recognition. Under some circumstances, changes in the expression of RAMP1 can alter the sensitivity of cells to CGRP, demonstrating that regulation of its levels may be of physiological or pathophysiological importance.
Advances in Experimental Medicine and Biology, 2012
The receptor activity-modifying protein (RAMP) family of membrane proteins regulates G protein-co... more The receptor activity-modifying protein (RAMP) family of membrane proteins regulates G protein-coupled receptor (GPCR) function in several ways. RAMPs can alter their pharmacology and signalling as well as the trafficking of these receptors to and from the cell surface. Accordingly, RAMPs may be exploited as drug targets, offering new opportunities for regulating the function of therapeutically relevant RAMP-interacting GPCRs. For example, several small molecule antagonists of RAMP1/ calcitonin receptor-like receptor complexes, which block the actions of the neuropeptide calcitonin gene-related peptide are in development for the treatment of migraine headache.
Calcitonin gene-related peptide (CGRP) is a member of the calcitonin (CT) family of peptides. It ... more Calcitonin gene-related peptide (CGRP) is a member of the calcitonin (CT) family of peptides. It is a widely distributed neuropeptide implicated in conditions such as neurogenic inflammation. With other members of the CT family, it shares an N-terminal disulphide-bonded ring which is essential for biological activity, an area of potential α-helix, and a C-terminal amide. CGRP binds to the calcitonin receptor-like receptor (CLR) in complex with receptor activity-modifying protein 1 (RAMP1), a member of the family B (or secretin-like) GPCRs. It can also activate other CLR or calcitonin-receptor/RAMP complexes. This 37 amino acid peptide comprises the N-terminal ring that is required for receptor activation (residues 1-7); an α-helix (residues 8-18), a region incorporating a β-bend (residues 19-26) and the C-terminal portion (residues 27-37), that is characterized by bends between residues 28-30 and 33-34. A few residues have been identified that seem to make major contributions to receptor binding and activation, with a larger number contributing either to minor interactions (which collectively may be significant), or to maintaining the conformation of the bound peptide. It is not clear if CGRP follows the pattern of other family B GPCRs in binding largely as an α-helix. This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Background and purpose: Transmembrane proline (P) residues in family A G protein-coupled receptor... more Background and purpose: Transmembrane proline (P) residues in family A G protein-coupled receptors (GPCRs) form functionally important kinks in their helices. These residues are little studied in family B GPCRs but experiments with the VPAC1 receptor and calcitonin receptor-like receptor (CL) show parallels with family A receptors. We sought to determine the function of these residues in the insert negative form of the human calcitonin receptor, a close relative of CL. Experimental approach: Proline residues within the transmembrane domains of the calcitonin receptor (P246, P249, P280, P326, P336) were individually mutated to alanine (A) using site-directed mutagenesis. Receptors were transiently transfected into Cos-7 cells using polyethylenimine and salmon and human calcitonin-induced cAMP responses measured. Salmon and human calcitonin competition binding experiments were also performed and receptor cell-surface expression assessed by whole cell ELISA. Key results: P246A, P249A and P280A were wild-type in terms of human calcitonin-induced cAMP activation. P326A and P336A had reduced function (165 and 12-fold, respectively). In membranes, human calcitonin binding was not detectable for any mutant receptor but in whole cells, binding was detected for all mutants apart from P326A. Salmon calcitonin activated mutant and wild-type receptors equally, although B max values were reduced for all mutants apart from P326A. Conclusions and Implications: P326 and P336 are important for the function of human calcitonin receptors and are likely to be involved in generating receptor conformations appropriate for agonist binding and receptor activation. However, agonistspecific effects were observed , implying distinct conformations of the human calcitonin receptor.
can lead to a variety of actions that include chaperoning of the receptor protein to the cell sur... more can lead to a variety of actions that include chaperoning of the receptor protein to the cell surface as is the case for the calcitonin receptor-like receptor (CLR) and the generation of novel receptor phenotypes. RAMP heterodimerization with the CLR and related CT receptor is required for the formation of specific CT gene-related peptide, adrenomedullin (AM) or amylin receptors. More recent work has revealed that the specific RAMP present in a heterodimer may modulate other functions such as receptor internalization and recycling and also the strength of activation of downstream signaling pathways. In this article we review our current state of knowledge of the consequence of RAMP interaction with family B GPCRs.
Objective: The trigeminovascular system plays a central role in migraine, a condition in need of ... more Objective: The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide calcitonin gene-related peptide (CGRP) is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods: Receptor expression was determined using Taqman G protein-coupled receptor (GPCR) arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results: mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1] and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation: The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine.
Background and PurposeThe N-terminus of calcitonin gene-related peptide (CGRP) is important for r... more Background and PurposeThe N-terminus of calcitonin gene-related peptide (CGRP) is important for receptor activation, especially the disulphide-bonded ring (residues 1–7). However, the roles of individual amino acids within this region have not been examined and so the molecular determinants of agonism are unknown. This study has examined the role of residues 1, 3–6 and 8–9, excluding Cys-2 and Cys-7.The N-terminus of calcitonin gene-related peptide (CGRP) is important for receptor activation, especially the disulphide-bonded ring (residues 1–7). However, the roles of individual amino acids within this region have not been examined and so the molecular determinants of agonism are unknown. This study has examined the role of residues 1, 3–6 and 8–9, excluding Cys-2 and Cys-7.Experimental ApproachCGRP derivatives were substituted with either cysteine or alanine; further residues were introduced at position 6. Their affinity was measured by radioligand binding and their efficacy by measuring cAMP production in SK-N-MC cells and β-arrestin 2 translocation in CHO-K1 cells at the CGRP receptor.CGRP derivatives were substituted with either cysteine or alanine; further residues were introduced at position 6. Their affinity was measured by radioligand binding and their efficacy by measuring cAMP production in SK-N-MC cells and β-arrestin 2 translocation in CHO-K1 cells at the CGRP receptor.Key ResultsSubstitution of Ala-5 by cysteine reduced affinity 270-fold and reduced efficacy for production of cAMP in SK-N-MCs. Potency at β-arrestin translocation was reduced by ninefold. Substitution of Thr-6 by cysteine destroyed all measurable efficacy of both cAMP and β-arrestin responses; substitution with either alanine or serine impaired potency. Substitutions at positions 1, 4, 8 and 9 resulted in approximately 10-fold reductions in potency at both responses. Similar observations were made at a second CGRP-activated receptor, the AMY1(a) receptor.Substitution of Ala-5 by cysteine reduced affinity 270-fold and reduced efficacy for production of cAMP in SK-N-MCs. Potency at β-arrestin translocation was reduced by ninefold. Substitution of Thr-6 by cysteine destroyed all measurable efficacy of both cAMP and β-arrestin responses; substitution with either alanine or serine impaired potency. Substitutions at positions 1, 4, 8 and 9 resulted in approximately 10-fold reductions in potency at both responses. Similar observations were made at a second CGRP-activated receptor, the AMY1(a) receptor.Conclusions and ImplicationsAla-5 and Thr-6 are key determinants of agonist activity for CGRP. Ala-5 is also very important for receptor binding. Residues outside of the 1–7 ring also contribute to agonist activity.Ala-5 and Thr-6 are key determinants of agonist activity for CGRP. Ala-5 is also very important for receptor binding. Residues outside of the 1–7 ring also contribute to agonist activity.
The neuropeptide, α-calcitonin gene-related peptide (α-CGRP), is expressed from sensory nerves th... more The neuropeptide, α-calcitonin gene-related peptide (α-CGRP), is expressed from sensory nerves that innervate fat. However, how α-CGRP may act in adipose tissue is unclear. Using 3T3-L1 adipocytes we observed that rat α-CGRP (rα-CGRP) evoked either a biphasic or monophasic reduction in intracellular free fatty acid (FFA) content. cAMP production was always monophasic and occurred when FFA responses were absent. Taken together with the observed potencies, these findings suggest that adipose tissue is a physiological target for α-CGRP. However, uncoupling of the FFA and CGRP-signaling responses with increasing passage number limits 3T3-L1 adipocytes as a suitable cellular model.
Journal of the Royal Society, Interface / the Royal Society, 2013
maximum lagged correlation of entropy and hydrophobicity into a consensus score, we have been abl... more maximum lagged correlation of entropy and hydrophobicity into a consensus score, we have been able to align receptor transmembrane regions. We have applied this analysis to generate active and inactive homology models of the class B calcitonin gene-related peptide (CGRP) receptor, and have supported it with site-directed mutagenesis data using 122 CGRP receptor residues and 144 published mutagenesis results on other class B GPCRs. The variation of sequence variability with structure, the analysis of polarity violations, the alignment of group-conserved residues and the mutagenesis results at 27 key positions were particularly informative in distinguishing between the proposed and plausible alternative alignments. Furthermore, we have been able to associate the key molecular features of the class B GPCR signalling machinery with their class A counterparts for the first time. These include the [K/R]KLH motif in intracellular loop 1, [I/L]xxxL and KxxK at the intracellular end of TM5 and TM6, the NPXXY/VAVLY motif on TM7 and small group-conserved residues in TM1, TM2, TM3 and TM7. The equivalent of the class A DRY motif is proposed to involve Arg 2.39 , His 2.43 and Glu 3.46 , which makes a polar lock with T 6.37 . These alignments and models provide useful tools for understanding class B GPCR function. This work was supported by grants from the Wellcome Trust (091496) to D.R.P. and the MRC (G1001812) to C.A.R.
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of ove... more The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.This compilation of the major pharmacological targets is divided into seven areas of focus: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets.It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors & Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.
Pancreatic β-cells are highly responsive to changes in glucose, but the mechanisms involved are o... more Pancreatic β-cells are highly responsive to changes in glucose, but the mechanisms involved are only partially understood. There is increasing evidence that the β-catenin signalling pathway plays an important role in regulating β-cell function, but the mechanisms regulating β-catenin signalling in these cells is not well understood. In the present study we show that β-catenin levels and downstream signalling are regulated by changes in glucose levels in INS-1E and β-TC6-F7 β-cell models. We found a glucose-dependent increase in levels of β-catenin in the cytoplasm and nucleus of INS-1E cells. Expression of cyclin D1 also increased with glucose and required the presence of β-catenin. This was associated with an increase in phosphorylation of β-catenin on Ser552, which is known to stabilize the molecule and increase its transcriptional activity. In a search for possible signalling intermediates we found forskolin and cell-permeable cAMP analogues recapitulated the glucose effects, suggesting a role for cAMP and PKA (cAMP-dependent protein kinase/protein kinase A) downstream of glucose. Furthermore, glucose caused sustained increases in cAMP. Two different inhibitors of adenylate cyclase and PKA signalling blocked the effects of glucose, whereas siRNA (small interfering RNA) knockdown of PKA blocked the effects of glucose on β-catenin signalling. Finally, reducing β-catenin levels with either siRNA or pyrvinium impaired glucose- and KCl-stimulated insulin secretion. Taken together the results of the present study define a pathway by which changes in glucose levels can regulate β-catenin using a mechanism which involves cAMP production and the activation of PKA. This identifies a pathway that may be important in glucose-dependent regulation of gene expression and insulin secretion in β-cells.
Journal of the Royal Society, Interface / the Royal Society, 2013
The calcitonin gene-related peptide (CGRP) receptor is a complex of a calcitonin receptor-like re... more The calcitonin gene-related peptide (CGRP) receptor is a complex of a calcitonin receptor-like receptor (CLR), which is a family B G-protein-coupled receptor (GPCR) and receptor activity modifying protein 1. The role of the second extracellular loop (ECL2) of CLR in binding CGRP and coupling to Gs was investigated using a combination of mutagenesis and modelling. An alanine scan of residues 271-294 of CLR showed that the ability of CGRP to produce cAMP was impaired by point mutations at 13 residues; most of these also impaired the response to adrenomedullin (AM). These data were used to select probable ECL2-modelled conformations that are involved in agonist binding, allowing the identification of the likely contacts between the peptide and receptor. The implications of the most likely structures for receptor activation are discussed.
Background and purposeA major challenge in the development of new medicines targeting G protein-c... more Background and purposeA major challenge in the development of new medicines targeting G protein-coupled receptors (GPCRs) is the ability to quantify drug action in physiologically-relevant models. Primary cell models that closely resemble the clinically relevant in vivo site of drug action are important translational tools in drug development. However, pharmacological studies in these models are generally very limited due to the methodology used.A major challenge in the development of new medicines targeting G protein-coupled receptors (GPCRs) is the ability to quantify drug action in physiologically-relevant models. Primary cell models that closely resemble the clinically relevant in vivo site of drug action are important translational tools in drug development. However, pharmacological studies in these models are generally very limited due to the methodology used.Experimental approachWe used a neuropeptide system to demonstrate the applicability of using highly sensitive signaling assays in primary cells. We quantified the action of pituitary adenylate cyclase-activating peptide (PACAP)-38, PACAP-27 and vasoactive intestinal polypeptide in primary neurons and glia derived from the rat trigeminal ganglia, comparing our observations to transfected cells.We used a neuropeptide system to demonstrate the applicability of using highly sensitive signaling assays in primary cells. We quantified the action of pituitary adenylate cyclase-activating peptide (PACAP)-38, PACAP-27 and vasoactive intestinal polypeptide in primary neurons and glia derived from the rat trigeminal ganglia, comparing our observations to transfected cells.Key resultsWe demonstrate that PACAP-responsive receptors in rat trigeminal neurons and glia, and transfected PAC1n receptors are pharmacologically distinct. PACAP-38 but not PACAP-27 activated extracellular signal-regulated protein kinase in glia, whilst both stimulated cellular cAMP production. PACAP(6-38) also displayed cell type dependent agonist-specific antagonism.We demonstrate that PACAP-responsive receptors in rat trigeminal neurons and glia, and transfected PAC1n receptors are pharmacologically distinct. PACAP-38 but not PACAP-27 activated extracellular signal-regulated protein kinase in glia, whilst both stimulated cellular cAMP production. PACAP(6-38) also displayed cell type dependent agonist-specific antagonism.Conclusions and implicationsThe complex PACAP pharmacology we uncovered in the trigeminal ganglia may help direct the development of disease treatments targeting the PACAP receptor. We suggest that these methodologies are broadly applicable to other primary cell types of human or animal origin, and that our approach may allow more thorough characterization of ligand properties in physiologically relevant cell types.The complex PACAP pharmacology we uncovered in the trigeminal ganglia may help direct the development of disease treatments targeting the PACAP receptor. We suggest that these methodologies are broadly applicable to other primary cell types of human or animal origin, and that our approach may allow more thorough characterization of ligand properties in physiologically relevant cell types.
Background and PurposeReceptor activity-modifying proteins (RAMPs) define the pharmacology of the... more Background and PurposeReceptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear.Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear.Experimental ApproachGuided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants.Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants.Key ResultsAn important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide.An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide.Conclusions and ImplicationsRAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2.RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2.
RFamide-related peptide-3 (RFRP-3) is a recently discovered neuropeptide that has been proposed t... more RFamide-related peptide-3 (RFRP-3) is a recently discovered neuropeptide that has been proposed to play a role in the stress response. We aimed to elucidate the role of RFRP-3 and its receptor, NPFF1R, in modulation of stress and anxiety responses. To achieve this, we developed a new NPFF1R antagonist, since our results showed that the only commercially available putative antagonist, RF9 is in fact an agonist at both NPFF1R and the kisspeptin receptor, KISS1R. We report here the identification and pharmacological characterization of GJ14, a true NPFFR antagonist. In in vivo tests of hypothalamic-pituitary-adrenal (HPA) axis function, GJ14 completely blocked RFRP-3-induced corticosterone release and neuronal activation in corticotropin-releasing hormone (CRH) neurons. Furthermore, chronic infusion of GJ14 led to anxiolytic-like behavior while RFRP-3 infusion had anxiogenic effects. Mice receiving chronic RFRP-3 infusion also had higher basal circulating corticosterone levels. These r...
Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. H... more Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. Here, we review the literature in rodents and in humans on amylin research since its discovery as a hormone about 25 years ago. Amylin is a 37-amino-acid peptide that activates its specific receptors, which are multisubunit G protein-coupled receptors resulting from the coexpression of a core receptor protein with receptor activity-modifying proteins, resulting in multiple receptor subtypes. Amylin's major role is as a glucoregulatory hormone, and it is an important regulator of energy metabolism in health and disease. Other amylin actions have also been reported, such as on the cardiovascular system or on bone. Amylin acts principally in the circumventricular organs of the central nervous system and functionally interacts with other metabolically active hormones such as cholecystokinin, leptin, and estradiol. The amylin-based peptide, pramlintide, is used clinically to treat type 1 a...
Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor... more Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory m...
Pramlintide (Symlin®), a synthetic analogue of the naturally occurring pancreatic hormone amylin,... more Pramlintide (Symlin®), a synthetic analogue of the naturally occurring pancreatic hormone amylin, is currently used with insulin in adjunctive therapy for type 1 and type 2 diabetes mellitus. Herein we report a systematic study into the effect that N-glycosylation of pramlintide has on activation of amylin receptors. A highly efficient convergent synthetic route, involving a combination of solid phase peptide synthesis and enzymatic glycosylation, delivered a library of N-glycosylated variants of pramlintide bearing either GlcNAc, the core N-glycan pentasaccharide [Man3(GlcNAc)2] or a complex biantennary glycan [(NeuAcGalGlcNAcMan)2Man(GlcNAc)2] at each of its six asparagine residues. The majority of glycosylated versions of pramlintide were potent receptor agonists, suggesting that N-glycosylation may be used as a tool to optimise the pharmacokinetic properties of pramlintide and so deliver improved therapeutic agents for the treatment of diabetes and obesity.
1-Piperidinecarboxamide, N-[2-[[5-amino-l-[[4-(4-pyridinyl)-l-piperazinyl]carbonyl]pentyl]amino]-... more 1-Piperidinecarboxamide, N-[2-[[5-amino-l-[[4-(4-pyridinyl)-l-piperazinyl]carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl) (BIBN4096BS), a calcitonin gene-related peptide (CGRP) receptor antagonist, can alleviate the symptoms of migraine and is highly selective for CGRP over adrenomedullin (AM) receptors. These receptors are heterodimers of the calcitonin receptor-like receptor (CL) and receptor activity modifying proteins (RAMPs), with the pharmacological properties determined by the RAMP subunit. BIBN4096BS-sensitive CGRP(1) receptors are CL/RAMP1, whereas BIBN4096BS-insensitive AM receptors are CL/RAMP2 or CL/RAMP3 (AM(1) and AM(2), respectively), implicating RAMP1 in conferring BIB-N4096BS sensitivity. Because calcitonin receptors [CT((a))] also interact with RAMP1 [AMY(1(a)) receptors], BIBN4096BS could also have affinity for these receptors. To test this, receptors were transfected into COS-7 cells and agonist-...
International Journal of Peptide Research and Therapeutics, 2012
ABSTRACT A chemical synthesis of the 37 residue polypeptide human amylin using microwave enhanced... more ABSTRACT A chemical synthesis of the 37 residue polypeptide human amylin using microwave enhanced solid phase peptide chemistry is described. An optimised protocol used only a single pseudoproline derivative, a chemically pure resin and single couplings of all amino acids to deliver non-oxidised amylin in high yield. Oxidation of the crude peptide to form the disulfide bond was accomplished in 20 min using 2,2′-dipyridyl disulfide in dimethyl sulphoxide giving human amylin that was fully functional in a cAMP assay.
Advances in Experimental Medicine and Biology, 2012
Receptor activity modifying protein 1 (RAMP1) forms a complex with calcitonin receptor-like recep... more Receptor activity modifying protein 1 (RAMP1) forms a complex with calcitonin receptor-like receptor (CLR) to produce the receptor for calcitonin gene-related peptide (CGRP). RAMP1 has two main roles. It facilitates the cell-surface expression of CLR. It is also essential for the binding of CGRP to the receptor. It seems likely that Y66, F93, H97 and F101, amongst other residues, form a binding site for CLR. These cluster together on the same face of the extracellular portion of RAMP1, probably close to where it enters the plasma membrane. Residues at the other end of RAMP1 are most likely to be involved in CGRP recognition, although it is currently unclear how they do this. Within this area, W74 is important for the binding of the nonpeptide antagonist, BIBN4096BS, although it does not seem to be involved in the binding of CGRP itself. It has been shown that there is an epitope within residues 23-60 of CLR that are essential for RAMP recognition. Under some circumstances, changes in the expression of RAMP1 can alter the sensitivity of cells to CGRP, demonstrating that regulation of its levels may be of physiological or pathophysiological importance.
Advances in Experimental Medicine and Biology, 2012
The receptor activity-modifying protein (RAMP) family of membrane proteins regulates G protein-co... more The receptor activity-modifying protein (RAMP) family of membrane proteins regulates G protein-coupled receptor (GPCR) function in several ways. RAMPs can alter their pharmacology and signalling as well as the trafficking of these receptors to and from the cell surface. Accordingly, RAMPs may be exploited as drug targets, offering new opportunities for regulating the function of therapeutically relevant RAMP-interacting GPCRs. For example, several small molecule antagonists of RAMP1/ calcitonin receptor-like receptor complexes, which block the actions of the neuropeptide calcitonin gene-related peptide are in development for the treatment of migraine headache.
Calcitonin gene-related peptide (CGRP) is a member of the calcitonin (CT) family of peptides. It ... more Calcitonin gene-related peptide (CGRP) is a member of the calcitonin (CT) family of peptides. It is a widely distributed neuropeptide implicated in conditions such as neurogenic inflammation. With other members of the CT family, it shares an N-terminal disulphide-bonded ring which is essential for biological activity, an area of potential α-helix, and a C-terminal amide. CGRP binds to the calcitonin receptor-like receptor (CLR) in complex with receptor activity-modifying protein 1 (RAMP1), a member of the family B (or secretin-like) GPCRs. It can also activate other CLR or calcitonin-receptor/RAMP complexes. This 37 amino acid peptide comprises the N-terminal ring that is required for receptor activation (residues 1-7); an α-helix (residues 8-18), a region incorporating a β-bend (residues 19-26) and the C-terminal portion (residues 27-37), that is characterized by bends between residues 28-30 and 33-34. A few residues have been identified that seem to make major contributions to receptor binding and activation, with a larger number contributing either to minor interactions (which collectively may be significant), or to maintaining the conformation of the bound peptide. It is not clear if CGRP follows the pattern of other family B GPCRs in binding largely as an α-helix. This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Background and purpose: Transmembrane proline (P) residues in family A G protein-coupled receptor... more Background and purpose: Transmembrane proline (P) residues in family A G protein-coupled receptors (GPCRs) form functionally important kinks in their helices. These residues are little studied in family B GPCRs but experiments with the VPAC1 receptor and calcitonin receptor-like receptor (CL) show parallels with family A receptors. We sought to determine the function of these residues in the insert negative form of the human calcitonin receptor, a close relative of CL. Experimental approach: Proline residues within the transmembrane domains of the calcitonin receptor (P246, P249, P280, P326, P336) were individually mutated to alanine (A) using site-directed mutagenesis. Receptors were transiently transfected into Cos-7 cells using polyethylenimine and salmon and human calcitonin-induced cAMP responses measured. Salmon and human calcitonin competition binding experiments were also performed and receptor cell-surface expression assessed by whole cell ELISA. Key results: P246A, P249A and P280A were wild-type in terms of human calcitonin-induced cAMP activation. P326A and P336A had reduced function (165 and 12-fold, respectively). In membranes, human calcitonin binding was not detectable for any mutant receptor but in whole cells, binding was detected for all mutants apart from P326A. Salmon calcitonin activated mutant and wild-type receptors equally, although B max values were reduced for all mutants apart from P326A. Conclusions and Implications: P326 and P336 are important for the function of human calcitonin receptors and are likely to be involved in generating receptor conformations appropriate for agonist binding and receptor activation. However, agonistspecific effects were observed , implying distinct conformations of the human calcitonin receptor.
can lead to a variety of actions that include chaperoning of the receptor protein to the cell sur... more can lead to a variety of actions that include chaperoning of the receptor protein to the cell surface as is the case for the calcitonin receptor-like receptor (CLR) and the generation of novel receptor phenotypes. RAMP heterodimerization with the CLR and related CT receptor is required for the formation of specific CT gene-related peptide, adrenomedullin (AM) or amylin receptors. More recent work has revealed that the specific RAMP present in a heterodimer may modulate other functions such as receptor internalization and recycling and also the strength of activation of downstream signaling pathways. In this article we review our current state of knowledge of the consequence of RAMP interaction with family B GPCRs.
Objective: The trigeminovascular system plays a central role in migraine, a condition in need of ... more Objective: The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide calcitonin gene-related peptide (CGRP) is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods: Receptor expression was determined using Taqman G protein-coupled receptor (GPCR) arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results: mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1] and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation: The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine.
Background and PurposeThe N-terminus of calcitonin gene-related peptide (CGRP) is important for r... more Background and PurposeThe N-terminus of calcitonin gene-related peptide (CGRP) is important for receptor activation, especially the disulphide-bonded ring (residues 1–7). However, the roles of individual amino acids within this region have not been examined and so the molecular determinants of agonism are unknown. This study has examined the role of residues 1, 3–6 and 8–9, excluding Cys-2 and Cys-7.The N-terminus of calcitonin gene-related peptide (CGRP) is important for receptor activation, especially the disulphide-bonded ring (residues 1–7). However, the roles of individual amino acids within this region have not been examined and so the molecular determinants of agonism are unknown. This study has examined the role of residues 1, 3–6 and 8–9, excluding Cys-2 and Cys-7.Experimental ApproachCGRP derivatives were substituted with either cysteine or alanine; further residues were introduced at position 6. Their affinity was measured by radioligand binding and their efficacy by measuring cAMP production in SK-N-MC cells and β-arrestin 2 translocation in CHO-K1 cells at the CGRP receptor.CGRP derivatives were substituted with either cysteine or alanine; further residues were introduced at position 6. Their affinity was measured by radioligand binding and their efficacy by measuring cAMP production in SK-N-MC cells and β-arrestin 2 translocation in CHO-K1 cells at the CGRP receptor.Key ResultsSubstitution of Ala-5 by cysteine reduced affinity 270-fold and reduced efficacy for production of cAMP in SK-N-MCs. Potency at β-arrestin translocation was reduced by ninefold. Substitution of Thr-6 by cysteine destroyed all measurable efficacy of both cAMP and β-arrestin responses; substitution with either alanine or serine impaired potency. Substitutions at positions 1, 4, 8 and 9 resulted in approximately 10-fold reductions in potency at both responses. Similar observations were made at a second CGRP-activated receptor, the AMY1(a) receptor.Substitution of Ala-5 by cysteine reduced affinity 270-fold and reduced efficacy for production of cAMP in SK-N-MCs. Potency at β-arrestin translocation was reduced by ninefold. Substitution of Thr-6 by cysteine destroyed all measurable efficacy of both cAMP and β-arrestin responses; substitution with either alanine or serine impaired potency. Substitutions at positions 1, 4, 8 and 9 resulted in approximately 10-fold reductions in potency at both responses. Similar observations were made at a second CGRP-activated receptor, the AMY1(a) receptor.Conclusions and ImplicationsAla-5 and Thr-6 are key determinants of agonist activity for CGRP. Ala-5 is also very important for receptor binding. Residues outside of the 1–7 ring also contribute to agonist activity.Ala-5 and Thr-6 are key determinants of agonist activity for CGRP. Ala-5 is also very important for receptor binding. Residues outside of the 1–7 ring also contribute to agonist activity.
The neuropeptide, α-calcitonin gene-related peptide (α-CGRP), is expressed from sensory nerves th... more The neuropeptide, α-calcitonin gene-related peptide (α-CGRP), is expressed from sensory nerves that innervate fat. However, how α-CGRP may act in adipose tissue is unclear. Using 3T3-L1 adipocytes we observed that rat α-CGRP (rα-CGRP) evoked either a biphasic or monophasic reduction in intracellular free fatty acid (FFA) content. cAMP production was always monophasic and occurred when FFA responses were absent. Taken together with the observed potencies, these findings suggest that adipose tissue is a physiological target for α-CGRP. However, uncoupling of the FFA and CGRP-signaling responses with increasing passage number limits 3T3-L1 adipocytes as a suitable cellular model.
Journal of the Royal Society, Interface / the Royal Society, 2013
maximum lagged correlation of entropy and hydrophobicity into a consensus score, we have been abl... more maximum lagged correlation of entropy and hydrophobicity into a consensus score, we have been able to align receptor transmembrane regions. We have applied this analysis to generate active and inactive homology models of the class B calcitonin gene-related peptide (CGRP) receptor, and have supported it with site-directed mutagenesis data using 122 CGRP receptor residues and 144 published mutagenesis results on other class B GPCRs. The variation of sequence variability with structure, the analysis of polarity violations, the alignment of group-conserved residues and the mutagenesis results at 27 key positions were particularly informative in distinguishing between the proposed and plausible alternative alignments. Furthermore, we have been able to associate the key molecular features of the class B GPCR signalling machinery with their class A counterparts for the first time. These include the [K/R]KLH motif in intracellular loop 1, [I/L]xxxL and KxxK at the intracellular end of TM5 and TM6, the NPXXY/VAVLY motif on TM7 and small group-conserved residues in TM1, TM2, TM3 and TM7. The equivalent of the class A DRY motif is proposed to involve Arg 2.39 , His 2.43 and Glu 3.46 , which makes a polar lock with T 6.37 . These alignments and models provide useful tools for understanding class B GPCR function. This work was supported by grants from the Wellcome Trust (091496) to D.R.P. and the MRC (G1001812) to C.A.R.
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of ove... more The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.This compilation of the major pharmacological targets is divided into seven areas of focus: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets.It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors & Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.
Pancreatic β-cells are highly responsive to changes in glucose, but the mechanisms involved are o... more Pancreatic β-cells are highly responsive to changes in glucose, but the mechanisms involved are only partially understood. There is increasing evidence that the β-catenin signalling pathway plays an important role in regulating β-cell function, but the mechanisms regulating β-catenin signalling in these cells is not well understood. In the present study we show that β-catenin levels and downstream signalling are regulated by changes in glucose levels in INS-1E and β-TC6-F7 β-cell models. We found a glucose-dependent increase in levels of β-catenin in the cytoplasm and nucleus of INS-1E cells. Expression of cyclin D1 also increased with glucose and required the presence of β-catenin. This was associated with an increase in phosphorylation of β-catenin on Ser552, which is known to stabilize the molecule and increase its transcriptional activity. In a search for possible signalling intermediates we found forskolin and cell-permeable cAMP analogues recapitulated the glucose effects, suggesting a role for cAMP and PKA (cAMP-dependent protein kinase/protein kinase A) downstream of glucose. Furthermore, glucose caused sustained increases in cAMP. Two different inhibitors of adenylate cyclase and PKA signalling blocked the effects of glucose, whereas siRNA (small interfering RNA) knockdown of PKA blocked the effects of glucose on β-catenin signalling. Finally, reducing β-catenin levels with either siRNA or pyrvinium impaired glucose- and KCl-stimulated insulin secretion. Taken together the results of the present study define a pathway by which changes in glucose levels can regulate β-catenin using a mechanism which involves cAMP production and the activation of PKA. This identifies a pathway that may be important in glucose-dependent regulation of gene expression and insulin secretion in β-cells.
Journal of the Royal Society, Interface / the Royal Society, 2013
The calcitonin gene-related peptide (CGRP) receptor is a complex of a calcitonin receptor-like re... more The calcitonin gene-related peptide (CGRP) receptor is a complex of a calcitonin receptor-like receptor (CLR), which is a family B G-protein-coupled receptor (GPCR) and receptor activity modifying protein 1. The role of the second extracellular loop (ECL2) of CLR in binding CGRP and coupling to Gs was investigated using a combination of mutagenesis and modelling. An alanine scan of residues 271-294 of CLR showed that the ability of CGRP to produce cAMP was impaired by point mutations at 13 residues; most of these also impaired the response to adrenomedullin (AM). These data were used to select probable ECL2-modelled conformations that are involved in agonist binding, allowing the identification of the likely contacts between the peptide and receptor. The implications of the most likely structures for receptor activation are discussed.
Background and purposeA major challenge in the development of new medicines targeting G protein-c... more Background and purposeA major challenge in the development of new medicines targeting G protein-coupled receptors (GPCRs) is the ability to quantify drug action in physiologically-relevant models. Primary cell models that closely resemble the clinically relevant in vivo site of drug action are important translational tools in drug development. However, pharmacological studies in these models are generally very limited due to the methodology used.A major challenge in the development of new medicines targeting G protein-coupled receptors (GPCRs) is the ability to quantify drug action in physiologically-relevant models. Primary cell models that closely resemble the clinically relevant in vivo site of drug action are important translational tools in drug development. However, pharmacological studies in these models are generally very limited due to the methodology used.Experimental approachWe used a neuropeptide system to demonstrate the applicability of using highly sensitive signaling assays in primary cells. We quantified the action of pituitary adenylate cyclase-activating peptide (PACAP)-38, PACAP-27 and vasoactive intestinal polypeptide in primary neurons and glia derived from the rat trigeminal ganglia, comparing our observations to transfected cells.We used a neuropeptide system to demonstrate the applicability of using highly sensitive signaling assays in primary cells. We quantified the action of pituitary adenylate cyclase-activating peptide (PACAP)-38, PACAP-27 and vasoactive intestinal polypeptide in primary neurons and glia derived from the rat trigeminal ganglia, comparing our observations to transfected cells.Key resultsWe demonstrate that PACAP-responsive receptors in rat trigeminal neurons and glia, and transfected PAC1n receptors are pharmacologically distinct. PACAP-38 but not PACAP-27 activated extracellular signal-regulated protein kinase in glia, whilst both stimulated cellular cAMP production. PACAP(6-38) also displayed cell type dependent agonist-specific antagonism.We demonstrate that PACAP-responsive receptors in rat trigeminal neurons and glia, and transfected PAC1n receptors are pharmacologically distinct. PACAP-38 but not PACAP-27 activated extracellular signal-regulated protein kinase in glia, whilst both stimulated cellular cAMP production. PACAP(6-38) also displayed cell type dependent agonist-specific antagonism.Conclusions and implicationsThe complex PACAP pharmacology we uncovered in the trigeminal ganglia may help direct the development of disease treatments targeting the PACAP receptor. We suggest that these methodologies are broadly applicable to other primary cell types of human or animal origin, and that our approach may allow more thorough characterization of ligand properties in physiologically relevant cell types.The complex PACAP pharmacology we uncovered in the trigeminal ganglia may help direct the development of disease treatments targeting the PACAP receptor. We suggest that these methodologies are broadly applicable to other primary cell types of human or animal origin, and that our approach may allow more thorough characterization of ligand properties in physiologically relevant cell types.
Background and PurposeReceptor activity-modifying proteins (RAMPs) define the pharmacology of the... more Background and PurposeReceptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear.Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear.Experimental ApproachGuided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants.Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants.Key ResultsAn important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide.An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide.Conclusions and ImplicationsRAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2.RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2.
Uploads
Papers by Debbie L Hay
Methods: Receptor expression was determined using Taqman G protein-coupled receptor (GPCR) arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons.
Results: mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1] and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons.
Interpretation: The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine.
Methods: Receptor expression was determined using Taqman G protein-coupled receptor (GPCR) arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons.
Results: mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1] and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons.
Interpretation: The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine.