

Vivaldi Technologies AS, Mølleparken 6, Oslo, Norway

28 August 2024

Comments on Mobile Browsers
and Cloud Gaming Market
Investigation WP7: Potential
Remedies
Contents:

The following is Vivaldi’s commentary on the WP7: Potential Remedies paper
dated 8 August 2024. Please contact us as usual if you wish to quote
some of it so we can redact any company confidential information.

Comments on section 5 (browser engine restrictions)	
2
Apple must allow browser engines access to all device features	
2

The missing remedy	
4
Apple must implement Web App install prompts	
4

The missing remedy	
7
Web Apps must open in the browser that installed them	
7

The missing remedy	
10
Comments on section 7 (Apple’s and Google’s choice architecture practices)	

10
Option C5	
10

Option C6	
11

Option C7	
11

Option C8	
11

Option C9	
11

Candidate selection for choice screen	
12

Design and functionality of choice screen	
12

END	 13

Vivaldi, launched in 2016, is a powerful, personal & private web browser (for
desktop, mobile and in-car) that adapts to its users and offers more features
than any other modern browser.

Vivaldi’s has two ground rules: privacy is a default, and everything’s an
option. In practice, this means building software that protects users’ privacy
but also does not track how they use it. Vivaldi believes private and secure
software should be the rule, not the exception.

Vivaldi is headquartered in Norway, with satellite offices in Iceland and USA.
It has no external investors and is co-owned by its approximately 50
employees.

There are currently 3,100,000 active users world-wide, [REDACTED] of
whom are in UK (as are [REDACTED] employees).

Comments on section 5 (browser engine restrictions)
Vivaldi exists to give users access to the Web in a way that they control,
while protecting them as far as possible from surveillance and other bad
actors.

Leaders in the organisation have many years of experience in ensuring that
the web service is available across devices, operating systems, constrained
networks and hardware.

Except in some very small niches (some gaming, systems very tightly
coupled to specific hardware features) we believe the web, built on mature
open technologies, should be the delivery mechanism for software, rather
than some vendor-controlled proprietary technology. Consumers should be
free to access that software on whichever browser and device they prefer.

This informs our comments. We welcome the CMA’s proposed remedies but
do not believe they go far enough to ensure that Web Applications can be a
viable competitor to single-platform “native” apps, especially on iOS.

Apple must allow browser engines access to all device
features

CMA wrote in the opening statements of the Market Investigation Reference
into Browsers and Cloud Gaming https://www.gov.uk/government/news/
cma-plans-market-investigation-into-mobile-browsers-and-cloud-gaming

https://www.gov.uk/government/news/cma-plans-market-investigation-into-mobile-browsers-and-cloud-gaming
https://www.gov.uk/government/news/cma-plans-market-investigation-into-mobile-browsers-and-cloud-gaming

“We all rely on browsers to use the internet on our phones, and the
engines that make them work have a huge bearing on what we can see
and do. Right now, choice in this space is severely limited and that has
real impacts – preventing innovation and reducing competition from
web apps. We need to give innovative tech firms, many of which are
ambitious start-ups, a fair chance to compete.”

Allowing competing browser engines, like Firefox’s Gecko and Chromium (in
Vivaldi, Chrome, Edge, Opera et al) is welcome, and vital. But that is not the
goal; the goal is making web apps competitive with “native” apps, and the
CMA does not go far enough because it only plans to mandate that Apple
“grant equivalent access to APIs used by WebKit and Safari to browsers
using alternative browser engines”.

The problem here is that Apple has long denied Safari access to some
system features that “native” apps on iOS can access. For years, for
example, native apps could send push notifications but Safari couldn’t. That
recently changed, although the web push implementation is still reportedly
buggy (https://webventures.rejh.nl/blog/2024/web-push-ios-one-year/). But
still on iOS, Apple refuses to allow the web to access Bluetooth, USB etc,
even though “native” apps can access these device capabilities.

Apple says that this is for security, but we note that Apple themselves told
the CMA (https://assets.publishing.service.gov.uk/media/
62277271d3bf7f158779fe39/Apple_11.3.22.pdf) that

“WebKit’s sandbox profile on iOS is orders of magnitude more
stringent than the sandbox for native iOS apps”

So Apple’s web browser, according to Apple, is more secure than Apple’s
own iOS native sandbox. Yet Apple has a worse track record than Firefox or
Google in shipping patches for browser vulnerabilities (https://
googleprojectzero.blogspot.com/2022/02/a-walk-through-project-zero-
metrics.html).

The CMA wrote (https://assets.publishing.service.gov.uk/media/
667d2f0caec8650b100900c0/WP2_-
_The_requirement_for_browsers_operating_on_iOS_devices_to_use_Apple_s
_WebKit_browser_engine_1.pdf)

“it is not clear from the evidence available to date that WebKit has
better security outcomes compared to other browser engines”

If Apple itself does not believe that native iOS apps are more secure than
browser sandboxes, why do they keep some device features away from

https://webventures.rejh.nl/blog/2024/web-push-ios-one-year/
https://assets.publishing.service.gov.uk/media/62277271d3bf7f158779fe39/Apple_11.3.22.pdf
https://assets.publishing.service.gov.uk/media/62277271d3bf7f158779fe39/Apple_11.3.22.pdf
https://assets.publishing.service.gov.uk/media/62277271d3bf7f158779fe39/Apple_11.3.22.pdf
https://googleprojectzero.blogspot.com/2022/02/a-walk-through-project-zero-metrics.html
https://googleprojectzero.blogspot.com/2022/02/a-walk-through-project-zero-metrics.html
https://googleprojectzero.blogspot.com/2022/02/a-walk-through-project-zero-metrics.html
https://assets.publishing.service.gov.uk/media/667d2f0caec8650b100900c0/WP2_-_The_requirement_for_browsers_operating_on_iOS_devices_to_use_Apple_s_WebKit_browser_engine_1.pdf
https://assets.publishing.service.gov.uk/media/667d2f0caec8650b100900c0/WP2_-_The_requirement_for_browsers_operating_on_iOS_devices_to_use_Apple_s_WebKit_browser_engine_1.pdf
https://assets.publishing.service.gov.uk/media/667d2f0caec8650b100900c0/WP2_-_The_requirement_for_browsers_operating_on_iOS_devices_to_use_Apple_s_WebKit_browser_engine_1.pdf
https://assets.publishing.service.gov.uk/media/667d2f0caec8650b100900c0/WP2_-_The_requirement_for_browsers_operating_on_iOS_devices_to_use_Apple_s_WebKit_browser_engine_1.pdf
https://assets.publishing.service.gov.uk/media/667d2f0caec8650b100900c0/WP2_-_The_requirement_for_browsers_operating_on_iOS_devices_to_use_Apple_s_WebKit_browser_engine_1.pdf

Safari? It’s fair to think that Apple wants to force businesses to make native
iOS apps instead of Web Apps, so that distribution and monetisation is
therefore controlled by Apple.

The missing remedy

To ensure that Apple cannot artificially hamstring all third party browsers, the
CMA should mandate that all APIs and device integrations available to native
iOS Apps, Apple’s own apps and services must be available to third party
browser engines.

Apple must implement Web App install prompts

Apple likes to tell regulators that web apps are an alternative to native iOS
apps in its App Store. In a submission to the Australian regulator (https://
www.accc.gov.au/system/files/
Apple%20Pty%20Limited%20%2810%20February%202021%29.pdf) Apple
wrote

Web browsers are used not only as a distribution portal, but also as
platforms themselves, hosting “progressive web applications” (PWAs)
that eliminate the need to download a developer’s app through the App
Store (or other means) at all. PWAs are increasingly available for and
through mobile-based browsers and devices, including on iOS. PWAs
are apps that are built using common web technology like HTML 5, but
have the look, feel and functionality of a native app.

Apple’s statement is not entirely accurate. Here’s an example of a PWA,
Stuart Langridge’s Farmbound game(https://www.kryogenix.org/
farmbound/), rendered by Chrome on Android, the OS manufacturer’s
provided browser (the lower part of the screen is cropped):

https://www.accc.gov.au/system/files/Apple%20Pty%20Limited%20%2810%20February%202021%29.pdf
https://www.accc.gov.au/system/files/Apple%20Pty%20Limited%20%2810%20February%202021%29.pdf
https://www.accc.gov.au/system/files/Apple%20Pty%20Limited%20%2810%20February%202021%29.pdf
https://www.kryogenix.org/farmbound/
https://www.kryogenix.org/farmbound/

Chrome has seen that Farmbound is an installable Progressive Web App and
generated the install banner seen ‘floating’ over the game (and which we’ve
highlighted with a red box). Tapping it adds the game’s icon to your Android
homescreen. The author didn’t need to do anything other than code the
game correctly, and add a line in his HTML pointing to a manifest file:

<link rel="manifest" href=“manifest.json">

By contrast, Safari, the default browser on iOS, does not prompt a user to
install a Progressive Web App. Instead, the user must perform the following
ritual:

• Press the share button. In this case, to install; no sharing involved here.

• Scroll down below the share menu’s fold to discover the ‘add to

homescreen’ option, assuming a user knows that this exists

• Click ‘add to homescreen’

• Decide to accept the app’s name, or replace it

• Click ‘add’

However, Apple does offer an analogous one-tap installation mechanism for
apps, but it only works for native iOS apps that are in the Apple App
Store.

A web site owner can add a single line of HTML, much like the one linking to
a PWA manifest, but this one pointing to the app in the App Store associated
with the website:

<meta name="apple-itunes-app" content="app-
id=myAppStoreID, app-argument=myURL">

Apple writes that its proprietary Smart App Banners (https://
developer.apple.com/documentation/webkit/
promoting_apps_with_smart_app_banners) allow site owners to

“create a banner to promote your app on the App Store from a
website”.

https://developer.apple.com/documentation/webkit/promoting_apps_with_smart_app_banners
https://developer.apple.com/documentation/webkit/promoting_apps_with_smart_app_banners
https://developer.apple.com/documentation/webkit/promoting_apps_with_smart_app_banners

Here’s an example from yuka.io (https://yuka.io/), with the Safari-generated
banner highlighted by us in a red box (the lower portion of the screenshot is
cropped):

Apple says

“If the app is already installed on a user’s device, the Smart App
Banner intelligently changes its action, and tapping the banner simply
opens the app. If the user doesn’t have your app on their device,
tapping the banner takes them to the app’s entry in the App Store …
Smart App Banners automatically determine whether the user’s device
supports your app. If it doesn’t, or if your app is unavailable in the
user’s location, the banner doesn’t appear.”

This is very different from the clunky precess to install a PWA on iOS, and
cast doubts on the accuracy Apple’s claim to the Australian regulator that
PWAs “have the look, feel and functionality of a native app”.

Close inspection of the Smart App Banner in the yuka.io screenshot above
reveals that below the ‘Get’ button, in a small grey font against a white
background, the words “In-App Purchases”.

http://yuka.io
https://yuka.io/
http://yuka.io

Apple makes it easy to install a native iOS App from a webpage; a native app
in the Apple App Store, from which Apple taxes 30% of in-app purchases. It
earns nothing from PWAs because they are distributed from the owners’
sites, not an intermediary gatekeeper’s App Store.

The missing remedy

Apple should not be allowed to continue self-preferencing native Apps over
Web Apps.

5.32 of CMA WP7 says

“Apple would be required to eliminate its use of private APIs for WebKit
and Safari without degrading currently available functionality made
available for WebKit and Safari”

We do not believe Smart App Banners should be removed, but comparable
functionality should be added to Safari for PWAs.

Vivaldi recommends removing any doubt, and asks that CMA explicitly
requires Apple to implement install prompts for PWAs in Safari/iOS. It
doesn’t have to be implemented in them the same way as Chrome, just with
the same outcome.

Web Apps must open in the browser that installed them

The current suggested remedies allow for third-party browser engines on
iOS, and those will be able to download PWAs. However, none of the
remedies explicitly requires that those PWAs will subsequently run in the
engine that downloaded them.

Apple could therefore argue that it could fulfil CMA’s remedies by allowing
browsers to use their own engine and providing them access to the share
menu to install Apple’s WebKit implementation of Web Apps.

This is actually the current state of affairs in the EU; Apple tried to completely
kill PWAs (which it calls ‘Homescreen Apps’) in Safari, so that it wouldn’t
have to allow them in other engines. They backed down after a campaign by
EU web developers (https://open-web-advocacy.org/blog/apple-backs-off-
killing-web-apps/), but (so far, at least) all PWAs on iOS will continue to be
hamstrung by running in Webkit. Apple said (https://developer.apple.com/
support/dma-and-apps-in-the-eu#8)

https://open-web-advocacy.org/blog/apple-backs-off-killing-web-apps/
https://open-web-advocacy.org/blog/apple-backs-off-killing-web-apps/
https://developer.apple.com/support/dma-and-apps-in-the-eu#8
https://developer.apple.com/support/dma-and-apps-in-the-eu#8

“we will continue to offer the existing Home Screen web apps
capability in the EU. This support means Home Screen web apps
continue to be built directly on WebKit and its security architecture,
and align with the security and privacy model for native apps on iOS.”

CMA is aware of this problem. In the interim report in connection with our
market study into mobile ecosystems (https://www.gov.uk/government/
publications/mobile-ecosystems-market-study-interim-report), they wrote

“By requiring all browsers on iOS to use the WebKit browser engine,
Apple is able to exert control over the maximum functionality of all
browsers on iOS and, as a consequence, hold up the development and
use of web apps. This limits the competitive constraint that web apps
pose on native apps, which in turn protects and benefits Apple’s App
Store revenues.”

Allowing third-party browsers to install PWAs but not subsequently run them
is user-hostile. The browser that installs a PWA would almost certainly be the
user’s default browser, and (on a personal device rather than, say, a locked-
down corporate laptop) people choose their default browser for a reason.

A disabled user of Vivaldi browser prefers to browse with some accessibility
settings that they can tweak as necessary according to the severity of
symptoms of a disability: 

https://www.gov.uk/government/publications/mobile-ecosystems-market-study-interim-report
https://www.gov.uk/government/publications/mobile-ecosystems-market-study-interim-report
https://www.gov.uk/government/publications/mobile-ecosystems-market-study-interim-report

Another person will use something else, with different settings. But whatever
their choice is, we believe it should be respected if you open up a PWA, and
believe that the CMA should make this explicit.

It would be simply weird and user-hostile if default browser settings worked
fine while someone played Farmbound on its website, but didn’t work if they
opened the Farmbound PWA because, unknown to them, it was running in
WebKit.

The missing remedy

The CMA should require that PWAs downloaded in one browser are
subsequently run in that browser, running its own engine, with its user
settings.

Otherwise, we could find ourselves in a situation where Vivaldi could ship
Vivaldi on iOS, powered by Chromium; therefore Chromium could be
someone’s default in-app browser, but we couldn’t implement Web
Bluetooth in Vivaldi (because Safari doesn’t have Bluetooth access, so
Vivaldi couldn’t have it either) and the user couldn’t have add a Web App to
Home Screen that opens with their chosen accessibility settings, because
Apple might/would mandate that add to Home Screen would add it as
Safari).

We do not believe this is a future that CMA or consumers want.

Comments on section 7 (Apple’s and Google’s choice
architecture practices)
Vivaldi believes that the browser choice screen should be shown at device
set-up and when new versions of operating systems are installed. This is
when consumers generally expect to be asked questions about the
environment.

We think this is a more natural time for a customer to be asked such
questions (they are already allocating time for setting up/ upgrading their
device, and expect configuration questions).

The alternative approach taken in EU (of asking users on first run of the
default browser) is more intrusive to the user, because they are attempting to
browse the web, potentially urgently. The user will also believe they have
completed device setup so feel their task at hand is being interrupted and
are therefore more likely to ‘skip’ the choice by confirming the default.

A ‘choice screen at first browse’ scenario also gives the incumbent an unfair
advantage, because it cements the idea that the manufacturer has provided
a default that will therefore be “good enough”.

Option C5

When the new regulatory regime comes into effect, existing smartphone
users will need to see the choice screen too. Because the changes required

in iOS and Android will necessitate the manufacturers to release a new
version of the software, the operating system update process should display
the choice screen.

Option C6

Vivaldi agrees with the suggested remedy of single centralised location in the
settings for changing default browser, regardless of what browser is currently
set as default and that the user journey for changing default browser should
be identical regardless of which browser is set as default.

Option C7

A requirement for Apple and Google to share user data on default browsers
settings with browser vendors.

It’s imperative that each vendor receives timely information from Apple and
Google that, at a minimum, allows the vendor to determine what proportion
of choice screen views resulted in selection of its product. The data must be
sufficiently granular (ideally, daily) so that trends can be identified (for
example, to cross-reference with marketing campaigns etc)

Assuming the choice screen randomises the position/ order of the various
browsers, the statistics should be broken down so that vendors can satisfy
themselves that the placements are truly random.

If this is offered via an API, it should be well-documented.

Option C8

Vivaldi agrees with the CMA that “limiting the frequency of prompts would
seek to level the playing field for other providers, ensuring that neither Apple
nor Google can leverage their control of their respective operating systems
to self-preference in relation to prompts and notifications regarding default
browser status”, and also that “using prompts is an important tool for third-
party vendors as it is one of the main mechanisms through which they can
obtain a foothold in the market.

Option C9

“A requirement for Apple and Google to allow users to uninstall Safari
browser app on iOS and Chrome on Android devices”

Vivaldi agrees that users must be able to uninstall browsers they no longer
want. Users on low-specification, low-storage devices could be put off from
installing a third-party browser if they knew they were further curtailing their

storage space by causing an unused, unwanted app to remain on their
device.

Storage space remains a problem in the world of mobile, especially for the
lower-end devices that make up the long tail of the market:

“All in all, we didn’t stand a chance as we were fighting with both our
competitors and other apps for a few more MB of room inside people’s
phones”

Inside Birdly: Why you shouldn’t bother creating a mobile app. https://
medium.com/inside-birdly/why-you-shouldn-t-bother-creating-a-mobile-
app-328af62fe0e5#.ufoave1x4

Candidate selection for choice screen

Vivaldi believes that the selection of candidates for the choice screen is of
paramount importance.

1. Candidates for the choice screen should be general-purpose web
browsers aimed at end-users.

We believe that Apple has attempted to erode trust in the EU’s choice
screen and exclude other competitors by deliberately including
browsers that aren’t useful to end-users, [REDACTED]

2. Cross-platform browsers should take priority. If it is a browser that is
available on all platforms, it is more likely to be a major competitor.

3. Browsers that contain their own compiled code should take priority as a
candidate. If their vendors compile the code themselves (rather than simply
wrap a third party’s core), they are more likely to receive quick security and
privacy updates.

4. Browsers that are updated frequently should take priority, as they are
more likely to receive quick security and privacy updates.

5. In the case of Android, the only OEM browser that should be a candidate
is that of the manufacturer of the device.

Design and functionality of choice screen

We also believe that the design and functionality of the choice screen is of
vital importance in reducing Apple and Google’s ability as controller of the

https://medium.com/inside-birdly/why-you-shouldn-t-bother-creating-a-mobile-app-328af62fe0e5#.ufoave1x4
https://medium.com/inside-birdly/why-you-shouldn-t-bother-creating-a-mobile-app-328af62fe0e5#.ufoave1x4
https://medium.com/inside-birdly/why-you-shouldn-t-bother-creating-a-mobile-app-328af62fe0e5#.ufoave1x4

Operating System to self-preference their own browsers. Therefore, the
order of display should be randomised each time the screen is displayed.

 Selection should only be possible once the user has scrolled through all the
choices, so that users whose font size is large for accessibility reasons are
aware of all the options. The choice screen should be very obviously
scrollable if there are options “below the fold”.

While not part of a choice screen, an additional ‘choice’ if a user installs a
third-party general-purpose browser (e.g., a choice screen candidate as
listed above) but has not set it as default replacing Safari on iOS, or Chrome
on Android would educate users and offer more competitive opportunity.

So if, for example, a user installs Vivaldi on iOS but did not know how to set
it as default, when default Safari is activated, a system message saying “You
downloaded Vivaldi; do you want to set that as default?” with a yes/ no
button could be shown (with ‘do not ask again’ choice).	

END

	Comments on section 5 (browser engine restrictions)
	Comments on section 7 (Apple’s and Google’s choice architecture practices)

