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1. Introduction 
Climate change poses one of the greatest threats to human communities, ecosystems, and 

development goals. Vulnerability to climate risks, typically characterized as a function of exposure, 
sensitivity, and adaptive capacity (e.g., Adger 2006), is often highest in the world’s poorest communities. 
The potential loss of ecosystem services threatens the livelihoods of many marginal populations, and a 
lack of resources in poorer communities exacerbates sensitivity and severely limits adaptive capacity. In 
many countries, rapid population growth, coupled with urbanization, place further pressure on the 
capacity of already stressed public and private institutions to provide essential services. 

The physical effects of climate change, such as sea-level rise, stronger and more frequent 
coastal storms, changing precipitation patterns, and increased incidence of drought and heat extremes 
have environmental, socioeconomic, and political consequences that are not mutually exclusive but 
instead augment one another. For example, increasing heat extremes and drought influences water 
availability and agricultural productivity, which in turn threatens food security, economic productivity, 
and political stability as competition for scarce resources is amplified. These connections often increase 
exposure and confound adaptation options. Further complicating matters, these relationships vary over 
space and operate at different scales as a function of existing socio-political conditions. Given these 
compounding threats, and with limited adapt-in-situ options, it is highly likely that patterns of human 
mobility will shift in response to climate change (IPCC 2014), including through migration as adaptation, 
forced displacement, planned relocations, and entrapment.  

The IPCC’s 5th Assessment Report recognizes migration as an important adaptation response to 
climate risks. Migration is a complex phenomenon driven by multiple, interacting processes that vary 
substantially over space. Certain baseline regularities relative to, for example, age-structure and gender, 
exist worldwide (e.g., De Jong 2000; Rogers and Castro 1981). However, unique regional and local 
patterns born out of complex decision-making processes are evident. The migration decision is informed 
by a diverse set of factors, including economic and political conditions, health and family considerations, 
the presence or absence of social and physical amenities, historic and cultural influences, and 
intangibles such as place attachment (Hatton and Williamson 2005). The relative importance of these 
factors will vary across regions, countries, segments of the population, and individuals as a function of 
cultural and societal norms, education, age and gender, and wealth. Rather than acting independently, 
climate/environmental factors tend to work through the various drivers of migration as seen in Figure 1, 
particularly so in regions economically dependent on threatened ecosystem services (Black et al. 2011; 
Tacoli 2009), and in urban areas. Substantial variation in the nature and distribution of environmental 
change, and the capacity of populations to mitigate and adapt, is likely to exacerbate geographic 
disparity in migration in the coming decades (Gemenne 2011; Raleigh et al. 2008). 

Climate-induced migration has the potential to impact existing public infrastructure, such as 
food, water, and energy distribution systems as well as public health capacity. Additionally, migration 
will fundamentally change the distribution of climate exposure and vulnerability, reducing threats in 
some places while enhancing or introducing new threats in others. Migration is a multi-scale process, 
occurring over varying distance and along alternative pathways, often as a function of underlying 
characteristics of the migrant stock and regional and/or local socioeconomic and political conditions. 
The characteristics of migrants matter to both sending and receiving regions, as the structure of the 
population will determine which services are most critical and what new patterns of climate-related 
vulnerability might emerge. As such, it is critical that national, regional, and local planners have some 
mechanism for anticipating the potential movement of people in response to climate change. Couching 
migration processes in the physical and socioeconomic impacts of climate change is paramount to 
identifying potential migration hot spots, that is, places likely to be large net senders and receivers of 
climate migrants possessing certain characteristics. In doing so, the appropriate agencies operating at 
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and across multiple scales will be better situated to integrate migration-related issues into the 
development and implementation of climate resilient policy aimed at protecting lives and livelihoods. 
 

  
Figure 1. Foresight model adapted to illustrate climate change, livelihoods, and household migration behavior (Source: Rigaud et 
al. 2018) 

The purpose of this report is to review the data and methods used to characterize the nature, 
scope, and scale of migration under a changing climate in Central America and Mexico. We aim to 
project potential migration outcomes under a range of climate and demographic/socioeconomic 
scenarios to further inform productive dialogue regarding the impact of policy decisions. In addition to 
broad estimates of international and internal migration intensity, the combination of spatially explicit 
models of climate change, sectoral impacts, and socioeconomic/demographically informed population 
change will reveal migration ”hot spots” (in and out) that may benefit from specific interventions to 
mitigate against negative impacts or in support of potential positive outcomes. Additionally, to help 
target efforts we aim to characterize the uncertainty in outcomes across alternative climate and societal 
outcomes. Underlying the project are three broad assumptions: (1) migration and displacement are 
likely consequences of and/or important adaptation responses to climate change, (2) patterns of 
climate-related migration will vary spatially, temporally, and as a function of scale (e.g., international vs. 
internal), and (3) climate-related migration trends are a function of the complex relationship between 
physical/environmental change, socioeconomic and demographic characteristics of populations, history 
and existing connections, political systems, and geographic characteristics of the landscape. 

In 2018, the Center for International Earth Science Information Network (CIESIN) and the CUNY 
Institute for Demographic Research (CIDR), under the overall direction of the World Bank, released the 
World Bank flagship report Groundswell: Planning for Internal Climate Migration (Rigaud et al. 2018). 
The novel methodological approach to estimating the impact of climate change on internal migration 
patterns was built from spatial methods of projecting future population distributions that can be 
calibrated to reflect the impact of difference potential drivers of change. This work builds upon the 
Groundswell methodology, incorporating a number of refinements and expanding the set of variables 
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that influence change in the spatial distribution of the population. The report is organized as follows: 
Section 2 briefly introduces the challenges associated with identifying and projecting climate migration, 
Section 3 will review the scenario framework we adopt for this project, Section 4 introduces the data 
used in the modeling approach, and finally Section 5 introduces the modeling approach itself, and finally 
Section 6 discusses some of the important limitations of the modeling approach and best practices for 
consuming the results.  

2. Understanding Climate Migration  
Over the past three decades, the scientific community has focused significant time and effort on 

understanding the physical effects of anthropogenic climate change. Comparatively less attention has 
been given to the societal dimensions of global change, and only in recent years have studies forecasting 
climate impacts on human populations really begun to proliferate. Efforts to model the impact of 
climate change on migration remain in their infancy, owing in part to significant data constraints and the 
difficulty in disentangling a causal human/environment relationship from dynamic societal processes 
(Hugo et al. 2012; Brown 2008; Black 2001). Baseline migration data, particularly intra-national, are 
difficult to come by and inconsistently compiled. Additionally, substantial population growth and 
redistribution in the developed world (forecast in the absence of climate change), and significant 
uncertainty in climate outcomes at the local level (both extreme events and slow-onset change), further 
confound estimates of climate-induced migration and displacement (Hugo et al. 2012). As such, 
modeling potential outcomes represents a substantial challenge, and existing estimates are often 
contentious, described at times as “excessively alarmist” and “well-educated guesswork” (Hugo et al. 
2012; Kolmannskog 2008). 

Despite these challenges and criticisms, there is real value in attempting to quantify the 
potential impacts of climate change on migration, particular from a policy perspective. Unanticipated 
movements are potentially detrimental to poverty eradication efforts, and yet it is quite likely that, in 
certain cases, migration represents an appropriate adaptation response to changing physical and 
socioeconomic conditions. Beginning to understand geographic variation in the intensity and 
directionality of migration, while acknowledging the uncertainty associated with any such projections, 
will help to understand the potential impacts of climate-induced migration and, subsequently, help 
frame the policy debate. To date, however, there is little consensus regarding the probable number of 
climate-induced migrants, and methods are disparate. In this section we review the methodological 
challenges associated with projecting migration under climate change as well as some of the early 
attempts to do so. 

2.1 Methodological Challenges 
 A fundamental difficulty associated with identifying and projecting the number of future climate 
migrants is the definition of climate-induced migration itself. Often referred to as “environmental 
migration,” there is no universally agreed upon definition of what broadly constitutes a climate migrant. 
The literature notes confusion regarding the various classes of climate migrants such as the distinction 
between forced and voluntary migrants, or the definition of internally displaced persons and climate 
refugees (Waldinger 2015; Hugo et al. 2012; Crisp 1999). In many cases, these terms are used 
interchangeably (Hugo et al. 2012). It is also likely that a certain percentage of climate migrants may fit 
into more than one class over time. For example, can a displaced person eventually become a voluntary 
migrant (by choosing not to return home), and if so, what is the appropriate passage of time? Similarly, 
the interaction of climate, socioeconomic, and political conditions confound classification schemes. How 
do we classify the refugees of conflict that has been exacerbated by climactic conditions? Scale also 
presents a major impediment to definitional questions as well. Hugo (1996) suggests that moves 
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motivated by environmental reasons tend to occur over short distances, which raises the question of 
how far one must travel in order to be counted. Definitional issues represent an impediment to the 
accurate characterization of climate-induced migration, which is likely to vary in scale, intensity, and 
causality over different parts of the world. These issues also impede the quest to count existing and 
project future climate migrants, as definitional inconsistency renders estimates incomparable. 
Furthermore, the intensity of the phenomenon in invariably tied to the definition (Hugo et al. 2012). 
 Estimates of future climate-induced migration flows are often driven by vulnerability 
assessment and assumptions regarding adaptations strategy. Vulnerability and adaptation strategy, and 
subsequently any effort to attach numbers to the climate-induced migration question, are subject to 
several significant sources of uncertainty. The impacts of climate change will unfold concurrent to 
shifting socioeconomic and political conditions, globalization, continued urbanization, and substantial 
changes in the relative distribution of the global population. Vulnerability and the feasibility of 
alternative adaptation options will vary as a function of these demographic, socioeconomic, and political 
factors. These conditions themselves are difficult to project, and yet it is impossible to characterize 
vulnerability and anticipate adaptation options (including migration) in their absence. Further 
confounding the equation is uncertainty associated with projections of climate change, particular at the 
local scale. Climate modeling techniques have advanced rapidly over the past several decades, and 
scenario-based estimates of climate change at the global-scale are perceived as fairly robust. However, 
it is still very difficult to accurately anticipate the impact of climate change on regional climate and 
weather, and geographically specific projections of extreme events are probabilistic and themselves 
fraught with uncertainty. 
 A further challenge to producing estimates of future climate-migrants are the difficulties 
associated with disentangling climate-induced migration from that driven by other 
socioeconomic/demographic forces (Jonsson 2010; Jäger et al.2009). It will be very difficult to, for 
example, distinguish between voluntary climate migrants and other urban-to-rural migrants, particularly 
in rapidly urbanizing regions of the developing world. Additionally, multi-causality is a common 
characteristic of migration, and it can be difficult to classify migrant types even in the absence of 
environmental factors. Correlation between drivers, including climate drivers, complicate the 
application of traditional statistical techniques, and good data on migration are difficult to come by, 
particularly internal migration (Brown 2008). There is agreement in the literature that climate change is 
best considered one of many possible drivers of migration (Waldinger 2015; Raleigh 2010). However, as 
climate change is likely to present conditions and challenges not yet experienced in many parts of the 
world, it will be both difficult to anticipate how populations react to different types of climate-related 
hazards and furthermore to extract the effect of these hazards from the many other factors known to 
drive migration. 

The media attention given to climate change and migration almost demands some attempt to 
quantify the potential impact of the former on the latter. However, it should be acknowledged up front 
that the challenges associated with doing so are extreme. Climate, socioeconomic, political, and 
demographic conditions all contribute to the phenomenon, and they do so within the context of local 
culture and history. The uncertainty associated with the drivers of migration and differential 
vulnerability and adaptation strategy are such that any estimate of the climate-change impact on 
migration should be taken with a healthy degree of skepticism. These caveats and limitations should be 
made clear, but they should not dissuade serious consideration of migration in crafting climate-resilient 
policy.  

The methods presented in this report represent a next generation approach to the assessment 
of migration under climate change. The modeling adopts and expands upon a scenario-based approach 
(Rigaud et al. 2018) that disaggregates the portion of future changes in population distribution that can 
be attributed to climate migration. The model, a gravity-based spatial allocation-type framework, 
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consists of two primary modules, international and internal, that are loosely coupled to produce 
estimates of cross-border and internal migration. Scenarios are combinations of socioeconomic and 
climate (emissions) projections. The development scenarios drive internal population and urbanization 
trends in a gravity model that distributes population change according to the perceived attractiveness of 
different locales over time. Future population distributions are influenced by climate impacts on the 
water and agriculture sectors, ecosystem impacts, and future flood risk, all of which influence 
attractiveness. The model estimates the number of climate migrants and their future locations by 
comparing population distributions that incorporate climate impacts with scenarios based on 
development trajectories only, which themselves include know drivers of migration such as GDP, 
diaspora (in the case of the international module), and stability/governance. 

3. Scenario Framework 
In this work, we adopt a scenario framework, a common approach in the climate change 

community, but less so in demographic research. As such, studies of vulnerability are less often based on 
this type of approach (Birkmann et al. 2015). Scenarios are generally designed to illustrate different 
plausible development pathways, often to make the future more realistic and logical for decision-
makers (Birkmann et al. 2015). Furthermore, scenarios help us to characterize and interpret 
uncertainties in key outcomes, to identify potentially desirable and undesirable outcomes, and to 
identify advantageous policies designed to improve outcomes (Birkmann et al. 2015; Preston et al 2009; 
Hallegatte et al. 2011; van Vuuren et al. 2012). For this study, we adopt the IPCC Representative 
Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) scenario framework.  

The development scenarios in this work are taken from the Shared Socioeconomic Pathways 
(SSPs), and they include two “high development” and one “low development” scenarios. The high 
development scenarios assume rapid convergence in socioeconomic conditions, higher levels of 
educational attainment, lower fertility rates and subsequently lower population growth, and high 
urbanization rates. However, the two scenarios differ in that the one assumes an ecofriendly future in 
which the primary fuel mix is dominated by clean renewables and planning/policy is oriented around 
efficiency and environmental preservation. The other assumes socioeconomic growth that is driven by 
the expanded use of, and continued reliance on, fossil fuels, and relatively little in the way of 
environmentally friendly policy. Under the low development scenario, developing countries are 
characterized by high population growth, low urbanization, very slow income growth, and significant 
inequality. Furthermore, in the low development future, nations take a very closed approach toward 
migration. These scenarios are discussed in more detail in the next section. 

Climate forecasts are based on three emissions scenarios. The lower emissions scenario is a world 
in which temperatures peak at 1.0o–2.2oC above pre-industrial levels by midcentury and then stabilize 
through the end of the century (IPCC 2014). This is the world of the Paris Agreement, in which countries 
work together to reduce greenhouse gas emissions to zero within the next 15–20 years (Sanderson et al. 
2016). In the higher emissions scenario, temperatures rise by 2.0o–3.2oC by 2050 and by 3.2o–5.6oC by 
2100. The moderate emissions scenario falls between the two extremes, with temperatures rising 1.5o–
2.6oC by 2050 and by 1.7o–3.2oC by 2100. 

3.1 The Representative Concentration Pathways (RCPs) 
 Developed in advance of the IPCC 5th Assessment Report, the RCPs represent the latest generation 
of global scenarios for climate change research (van Vuuren at al. 2014). The RCPs are trajectories of 
greenhouse gas (and other pollutants) concentrations resulting from human activity corresponding to a 
specific level of radiative forcing in 2100. For example, RCP8.5 implies a future where radiative forcing of 
8.5 W/m² is achieved by the end of the century. An important characteristic of the RCPs is that they do 
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not rely on a fixed set of scenario specific assumptions regarding economic development, technological 
change, or population growth. Instead, there are many different socioeconomic futures or pathways that 
may lead to the same level of radiative forcing. This framework allows researchers to consider alternative 
policy decisions with combinations of societal, economic, and technological change. As such, a future with 
high population but rapid development of clean technology may achieve the same level of radiative 
forcing as a world characterized by low population growth but continued reliance on fossil fuels. This 
framework is very useful from a policy analysis perspective, as it allows researchers to specify specific 
levels of global change (e.g., 2°) and then explore alternative policy options to achieve emissions levels 
consistent with the goal. Previous scenarios, by contrast, specified the socioeconomic conditions from 
which climate change/impacts were then calculated.  

Climate output consistent with three RCPs (2.6, 4.5, and 8.5) are incorporated in this work as 
drivers of the vulnerability and sectoral-change indicators (introduced below) proposed for inclusion in 
the international and internal migration models (see Section 4). In many cases (e.g., the Inter-Sectoral 
Model Intercomparison Project; ISIMIP) indicators have been projected and are incorporated directly into 
this work. In others we have proposed projecting an existing indicator (or set of indicators) into the future 
(e.g., the World Risk Index, see section 3.4.1). We propose, where necessary, using the climate output 
available as part of the ISIMIP (discussed in more detail in section 3.5.1) such that the climate outputs are 
consistent across the entire project. The three RCP scenarios considered in this work are now discussed 
in more detail. 

RCP2.6 is a low emissions scenario. Greenhouse gas emission begins to decline by 2020, and 
radiative forcing peaks by midcentury before declining to near current levels by 2100. This scenario is 
consistent with the extremely rapid adoption of new, cleaner technologies, slower population growth, 
and strong environmental policy. To achieve an RCP2.6 future, new technologies would need to be widely 
employed in the next 5-10 years. The extended RCP2.6 scenario assumes “negative emissions” by 2070, 
meaning humans are removing more CO2 and CH4 from the atmosphere than they are releasing. 

RCP4.5 is an intermediate emissions scenario. It is consistent with a future including relatively 
ambitious climate policy, stable CH4 emissions, and CO2 emissions that peak by midcentury before 
declining. Societal pathways including rapid adoption of new, less energy intensive technologies, declining 
agricultural land use, slower population growth and more organized urban development, and the 
implementation of environmental conscious programs such as reforestation are all consistent with an 
RCP4.5 future. 

RCP8.5 is characterized by increasing greenhouse gas emissions over time, leading to high 
atmospheric concentration. It is a future consistent with scenarios of energy intense development, 
continued reliance on fossil fuels, and slow rate of technological development. Alternatively, pathways 
characterized by rapid population growth and land use intensification (croplands and grasslands) are also 
consistent. RCP8.5 implies little to no climate policy, and it is characterized by significant increases in CO2 
and CH4 emissions. 

3.2 Shared Socioeconomic Pathways (SSPs) 
The five SSPs, described in more detail in O’Neill et al. (2015), span a wide range of possible 

future development pathways and describe trends in demographics, human development, economy and 
lifestyle, policies and institutions, technology, and environment and natural resources. Broadly, they are 
organized according to the respective challenges to adaptation and mitigation in each future world (see 
Figure 2). Importantly, climate change impacts are not directly included in these scenarios, however 
they can be thought as consistent with broad assumptions regarding the primary factors driving 
challenges to adaptation and mitigation, namely population and emissions, respectively. National-level 
estimates of population, urbanization, and GDP have been released for each SSP and are available 
through the SSP database (https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about). 

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about
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Population estimates include assumptions regarding international migration, however, once 
again these assumptions are made in the absence of any information regarding climate change, 
exposure, and vulnerability. In this work we will attempt to model the potential impacts of climate 
change on international migration. No assumptions are made regarding internal migration. In this work 
we will consider SSP1, SSP3, and SSP5, described here in more detail. 

 

 
Figure 2. The five Shared Socioeconomic Pathways (SSPs) (O’Sullivan 2018) 

 
Two SSPs describe worlds in which societal conditions are hypothesized to present (on balance) 

lower challenges to adaptation. SSP1 (Sustainability) envisions a development path with a gradual shift 
toward greater emphasis on environmental protection, reduced inequality, and enhanced cooperation 
internationally and among different segments of society. There is increased investment in education and 
health and relatively high-income growth, leading to a relatively rapid demographic transition and 
therefore low population growth in the high-fertility countries. In contrast, in currently low-fertility 
countries, optimism about economic prospects sustains fertility at medium levels (somewhat below 
replacement levels of about two children per woman). Migration is moderate and urbanization, though 
rapid, is well managed and sprawl and urban de-concentration are minimized. SSP5 (Fossil-Fueled 
Development) has a greater emphasis on competitive markets, innovation and globalization than does 
SSP1, and also a greater reliance on fossil fuels (with less concern for global environmental 
consequences). But it also has several similarities in terms of human capital and demographic outcomes. 
Strong investments in education and even more rapid income growth than in SSP1 lead to similarly low 
fertility (and low population growth) in high-fertility countries and even higher fertility in the currently 
low-fertility countries (at or around replacement level). Migration levels are high, and urbanization (as in 
SSP1) is rapid. However, unlike SSP1, urban planning has difficulty keeping up with high urbanization 
rates, and sprawling patterns of development dominate. 



11 
 

SSP3 (Regional Rivalry) describes a world in which conditions are assumed to present high 
challenges to adaptation. Nationalism and security concerns lead to regionalization (rather than 
globalization), with weak institutions, slow technological change and economic growth, and little 
environmental protection. Relatively low investments in human capital lead to relatively high fertility 
and population growth rates in the currently high fertility countries. In contrast, economic uncertainty 
leads to relatively low fertility rates and low population growth (or decline) in the currently low-fertility 
countries. The low assumed migration rates do little to contribute to growth in these regions. Limited 
urban employment opportunities lead to slow urbanization, and urban settlements are poorly planned, 
particularly in developing countries, where inequality and fragmentation lead to a mixed pattern of 
urban change (e.g., pockets of wealthier, deconcentrated settlements alongside more concentrated 
slum-type growth). 

 

3.3 Scenario Combinations Used in the Model 

Following the logic of the Groundswell approach, here five plausible socioeconomic and climate 
futures are considered, four of which are based on the various combinations of SSPs 3 and 5 and RCPs 4.5 
and 8.5. This matrix of scenarios allows us to examine the relative importance of different climate and 
societal futures in driving potential migration outcomes as, for example, we can assess each climate 
scenario (RCP) within the context of different societal outcomes (SSPs) by holding the former constant 
and varying the latter (and vice versa). The final scenario is the most optimistic SSP/RCP combination, and 
it serves as a point of reference against which to measure the less optimal outcomes. The scenarios can 
be characterized as follows: 

1. An optimistic/reference scenario (SSP1 and RCP2.6), in which climate impacts are rapidly reduced 

on a global scale and there is regional convergence toward higher levels of development across 

Central America and Mexico. 

2. A pessimistic scenario (SSP3 and RCP8.5), in which climate change impacts are on the high end of 

current plausible scenarios and significant challenges to socioeconomic development exist 

throughout the region, exacerbating the gap between Central America and the United States.  

3. A more climate-friendly scenario (SSP3 and RCP4.5), which pairs a less-extreme climate outcome 

with the same challenging socioeconomic future as the pessimistic scenario (Scenario #2).  

4. A more development-friendly scenario (SSP5 and RCP8.5), which follows the pessimistic climate 

future but assumes a more inclusive development pathway in which regional economic growth 

occurs quickly.  

5. A moderate scenario (SSP5 and RCP4.5), in which socioeconomic development occurs rapidly 

throughout the region accompanied by a moderate level of climate change. 
 

4. Data 
In this section, we review the data inputs to the model in detail. Table 1 includes a complete list 

of data products and variables, it and indicates whether the product was used in the international or 
internal model (or both, in some cases). 
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4.1 Historical Bilateral Migration Flows 
 The historic international migration data used to calibrate the model were obtained from two 
sources. First, for movement from each Central American country and Mexico to the United States, data 
for 1990, 2000, and 2015 were accessed through the Migration Policy Institute (MPI 2019), which for 
2000 and 2015 includes the data found in the Yearbook of Immigration Statistics from the Department 
of Homeland Security (e.g., USDHS 2015). Flows include all migrants to the United States who have been 
granted legal status, which includes green card (permanent residents) and visa holders (temporary 
nonimmigrants), and refugees/asylum-seekers. These data are supplemented by the bilateral flow data 
produced by Abel and Cohen (2019), who estimate bilateral migration flows between all origin-
destination country pairs based on migrant stock data published by the World Bank and United Nations. 
The Abel and Cohen dataset is the source of all flows between Central American countries (including 
Mexico), as the bilateral flow data between countries is not provided by national statistical offices, is not 
compiled consistently or over the appropriate time steps, or does not exist. For purposes of consistency 
across all countries in the study, the MPI data have been scaled to reflect the trends reflected in the 
Abel and Cohen dataset. 

4.2 Inter-Sectoral Model Intercomparison Project 
The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) is an ongoing community-

driven modeling effort organized by Potsdam Institute for Climate Impact Research (PIK) designed to 
provide a framework for comparing multi-scale, cross-sectoral climate impact projections (Warszawski et 
al. 2014). Based on the RCPs and SSPs, ISIMP facilitates a quantitative assessment of impacts across 
multiple sectors and models based on common climate and socioeconomic background scenarios and 
climate model inputs. A major goal of the project is the development of policy-relevant metrics. Over the 
course of this century, policymakers will be tasked with assessing the costs associated with mitigation 
efforts against those of adapting to a warmer world. In that spirit, the project is motivated by and 
organized around a central question: how do impacts vary between 2°C, 3°C, and 4°C of global warming? 
Research is designed to isolate “tipping points,” the level of environmental change associated with rapid 
increase in negative sectoral impacts. 

The ISIMP “fast track,” completed in 2013 and published in 2014, included 28 global impact 
models representing five different sectors (water, biomes, agriculture, coastal infrastructure, and health). 
Fast-track results were published in a special issue of The Proceedings of the National Academy of Sciences 
and are available for public use through PIK. Impact models were driven by common gridded climate data 
from five different climate models spanning the full range of RCPs. Data are organized on a 0.5° x 0.5° 
global grid for the period 1960-2100. More detail on the climate inputs, impact models, and scenarios can 
be found in Warszawski et al. (2014). 

This project uses outputs of the ISIMIP Fast Track modeling effort for crop production, water 
availability, and ecosystem impacts, which covers 1970–2010, as well as projections for 2010–50 (Piontek 
et al. 2013). Under the Fast Track, the future sectoral impact models are driven by a range of general 
circulation models. This project used two general circulation models that provide a good spread for the 
temperature and precipitation parameters of interest: the HadGEM2-ES climate model developed by the 
Met Office Hadley Centre for Climate Change (United Kingdom) and the IPSL-CM5A-LR climate model 
developed by the Institut Pierre Simon Laplace Climate Modeling Center (France). The crop, water, and 
ecosystem simulations — at a relatively coarse spatial scale (0.5°) — represent indicators that capture the 
impact climate may have on specific types of livelihoods, the viability of which will figure into the migration 
decision (e.g., climate acting through other mechanisms; see Figure 1). These climate impacts were 
selected because the literature shows that water scarcity, declining crop yields, and declines in pasturage 
are among the major potential climate impacts facing lower-income countries and these impacts will also 
be very important drivers of migration. 
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4.2.1 Water and crop models  
The primary ISIMIP drivers included in this analysis were water availability and crop yields. Output 

from the water sector model are representative of river discharge, measured in cubic meters per second 
in daily/monthly time increments, and are influenced by rainfall and changing temperatures. Crop sector 
model outputs estimate annual crop yield of four staple crops (maize, wheat, rice, and soybeans) in tons 
per hectare at a 0.5° x 0.5° grid cell resolution, and they are a function of rainfall, temperature, CO2 
concentrations, irrigation, and other management practices. Because the impact of climate change on 
local conditions, that is the deviation from historic local norms, is more indicative of potentially disruptive 
change than absolute yields, here we adopt the approach used in the Groundswell report in which the 
data are transformed to reflect periodic deviation from the 40-year historic baseline. The data were 
converted to five-year average water availability and crop production (in tons) per grid cell, and an index 
was then calculated that compares those values with the 40-year average for water availability and crop 
production for 1970–2010:  

Index = (Davg - Bavg) / Bavg        (Eq. 1) 

where Davg is the five-year average crop production/water availability and Bavg is the baseline average crop 
production/water availability for the 40-year period 1970–2010. The indexes for water availability and 
crop production represent deviations from the long-term averages.  

We also adopt the Groundswell approach to selecting ISIMIP crop and water model outputs based 
on different combinations of climate, crop, and water models. Applying the combinations — two global 
climate models driven by two different emissions scenarios, which in turn drive two sets of sectoral impact 
models (described below) — provides a range of plausible population projections while also indicating 
regions where the models tend toward agreement (Rigaud et al. 2018). The modeling for this assessment 
employed the HadGEM2-ES and IPSL-CM5A-LR global climate models, which drive combinations of the 
two water models and two crop models: the LPJmL water and crop models, the WaterGAP2 water model, 
and the GEPIC crop model (Table 2). The crop and water models were selected by experts at PIK based on 
several criteria, including model performance over the historical period, diversity of model structure, 
diversity of signals of future change, and availability of both observationally driven historical and global 
climate model-driven historical and future simulations. Table 2 (below) presents the combinations of 
models used. 

 
Table 2. Matrix of global climate models and crop/net primary productivity (NPP) and water model combinations (adopted from 
Rigaud et al. 2018) 

 Crop/NPP simulation 

Water simulation  

HadGEM2-ES,  

LPJmL (crop)   

LPJmL(NPP) 

HadGEM2-ES, 

GEPIC (crop)   

Visit (NPP) 

IPSL-CM5A-LR,  

LPJmL (crop)   

LPJmL (NPP) 

IPSL-CM5A-LR, 

GEPIC (crop)   

Visit (NPP) 

HadGEM2-ES, LPJmL (water) Model 1    

HadGEM2-ES, WaterGAP2  Model 2   

IPSL-CM5A-LR, LPJmL (water)   Model 3  

IPSL-CM5A-LR, WaterGAP2    Model 4 

 

4.2.2 Ecosystem productivity  
In the same way that crop production is an important metric of farm-based livelihoods, ecosystem 

productivity is an important measure for pastoral livelihoods. Throughout most of Central America, 
agriculture is more prevalent than pastoralism or other livestock operations, however there are regions 
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(particularly in Mexico) where such livelihoods dominate. In this project, ecosystem productivity is applied 
as a potential driver in non-urban areas where the crop data indicate that agriculture is not taking place 
(e.g., those places likely suitable for pastoralism). Using ecosystem productivity only in areas lacking crop 
productivity data was deemed preferable to including an overlay of NPP on top of the crop production, 
since there is high spatial co-linearity between the crop and ecosystem metrics. 

Ecosystem productivity is estimated in terms of net primary productivity (NPP). The ecosystem 
models simulate the natural growth of several different plant functional types, including grasses, thus, 
NPP simulated by these models serves as an estimate of the productivity of a location's natural biome, 
including grassland biomes that may potentially support pastoral livelihoods. Like the water and crop 
metric, NPP is transformed to represent local periodic deviation from the historic baseline. The NPP 
sectoral models used in this work are the LPJmL and Visit models — the former is used with the LPJml 
crop production and water availability models, while the latter is used with the GEPIC crop and WaterGap 
water models — and the models were driven by the same general circulation models as the water and 
crop models. 

4.3 Flood hazard 
Flood hazards are known to have a substantial impact on displacement throughout Central 

America, particularly in those places vulnerable to tropical weather systems. The flood hazard layer is 
based on projected flood depth simulated by a global flood model CaMa-Flood (Yamazaki et al. 2011) 
version 3.4.4, which itself is driven by inputs (daily runoff) from multiple global hydrological models 
included in the ISIMIP2b (Frieler et al. 2017) project. The hydrological models are forced by four bias-
corrected climate model outputs (temperature, precipitation, radiation, etc.) from the Coupled Model 
Intercomparison Project phase 5 (CMIP5; Taylor et al. 2012). In this assessment, the historic relationship 
between flood hazard, as characterized by the return rate of 100-year flood, and spatial population 
change was established (controlling for other variables). This relationship was assumed to remain 
constant and contributed to projections of future spatial population change. 

4.4 GRACE Groundwater 
The Trends in Global Freshwater Availability from the Gravity Recovery and Climate Experiment 

(GRACE), 2002-2016, is a global gridded dataset at a spatial resolution of 0.5° that presents trends (rate 
of change measured in centimeters per year) in freshwater availability based on data obtained from 2002 
to 2016 by NASA GRACE. Terrestrial water availability storage is the sum of groundwater, soil moisture, 
snow and ice, surface waters, and wet biomass, expressed as an equivalent height of water. GRACE 
measures changes in the terrestrial water cycle by assessing small changes in Earth's gravity field. This 
observation-based assessment of how the world's water cycle is responding to human impacts and 
climate variations provides an important tool for evaluating and predicting emerging threats to water and 
food security (Rodell at al. 2019). 

4.5 RCP-based Extreme Heat Outcomes 
The extreme heat projections for this assessment are taken from the Benefits of Reduced 

Anthropogenic Climate Change (BRACE) project (O’Neill and Gettelman, 2018). The National Center for 
Atmospheric Research–Department of Energy (NCAR-DOE) Community Earth System Model (CESM) large 
ensemble (29 members) was used to produce projections of future conditions under the RCP8.5 climate 
scenario (Kay et al. 2014) and the medium ensemble (14 members) for projections of future conditions 
under the RCP4.5 climate scenario (Sanderson et al. 2015). For the RCP2.6 scenario, we assume the 
current temperature regime persists. Global projections of temperature are considered at the ~1° native 
CESM grid and bias corrected before computing heat extreme metrics (Oleson et al., 2015).   
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There is no universally agreed upon definition of a heat wave, so once again we draw on the 
BRACE project to develop a locally adaptive method for characterizing heat extremes (e.g., Anderson et 
al., 2016; Jones et al., 2018). At the grid-cell level, we define a heat wave to account for two basic features 
of the problem: local conditioning (i.e., the range of temperatures to which local population is acclimated) 
and a minimum intensity, to ensure that a heat wave actually consists of dangerously warm days. We 
achieve this by specifying two thresholds that must be met for any two or more consecutive days: an 
average daily temperature (𝑇̅) that is greater than a relative threshold (𝑇̅𝑟𝑒𝑙) specified as a percentile of 

the current distribution of daily mean temperature, and a maximum daily temperature (𝑇̂) that is greater 
than an absolute temperature threshold (𝑇𝑎𝑏𝑠). That is, a heat wave day must have: 

 

𝑇̅ > 𝑇̅𝑟𝑒𝑙    ,   𝑇̂ > 𝑇𝑎𝑏𝑠       (Eq. 2)  
 
To implement this definition, we assume that the relative threshold is given by the 98th percentile 

of the present-day (1981-2005) distribution of daily mean temperature (𝑇̅98), and that the absolute 
threshold is a daily maximum temperature of 35°C (𝑇35), a commonly used heat threshold (Wilder et al. 
2013; Jones et al. 2015).1 As such, an extreme heat event is comprised of two or more consecutive days 
meeting the following criteria: 

 

𝑇̅𝐺𝐶𝐴 > 𝑇̅98,𝐺𝐶𝐴   ,   𝑇̂𝐺𝐶𝐴 > 𝑇35,𝐺𝐶𝐴    (Eq. 3) 
 

In this work we consider extreme heat in a twofold manner. First, we assess the historic relationship 
between spatial population change and average annual exposure to extreme heat measure in person 
days (number of extreme heat days * population). In many cases, there is no meaningful relationship 
(with some notable exceptions throughout drier regions of Mexico and some lowland regions of Central 
America). The second application of these data is to project changes in exposure to heat extremes over 
time. Thus, whereas in some regions the impact of heat on migration may be difficult to characterize, we 
are able to speak to the potential change in exposure under different climate/socioeconomic scenarios 
that is an important component of assessing future vulnerability to climate extremes. 

4.6 Instability, Violence, and Corruption 
Broad data on governance are from the Worldwide Governance Indicators (WGI) project, which 

covers over 200 countries and territories, measuring six dimensions of governance starting in 1996: voice 
and accountability, political stability and non-violence, government effectiveness, regulatory quality, rule 
of law, and control of corruption. The aggregate indicators are based on several hundred individual 
underlying variables, taken from a wide variety of existing data sources. The data reflect the views on 
governance of survey respondents and public-, private-, and NGO-sector experts worldwide. The WGI also 
explicitly report margins of error accompanying each country estimate. These reflect the inherent 
difficulties in measuring governance using any kind of data. Even after taking these margins of error into 
account, the WGI permit meaningful cross-country and over-time comparisons (Kraay et al. 2010). In this 
project we use the (1) political stability and non-violence index, defined as “capturing perceptions of the 
likelihood of political instability and/or politically-motivated violence, including terrorism” and the (2) 
control of corruption index, which “captures perceptions from firms and households survey respondents 
and public, private, and NGO sector experts worldwide of public power exercised for private gain, 

 
1 The most deadly extreme heat events of the past several decades have demonstrated maximum daily highs in 
exceedance of 40°C for several consecutive days (e.g., India 2015; France/Europe 2003; Chicago/Midwestern US 
1995) while daily mean temperatures hovered between the 32-36°C range. 
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including both petty and grand forms of corruption, as well as ‘capture’ of the state by elites and private 
interests.” 

4.7 Gross Domestic Product (GDP) 
Long-term scenarios (up to 2100) of national-level GDP are from the Organization for Economic 

Co-operation and Development (OECD) and are based on the five SSPs. The projections assume a 
convergence process and places emphasis on the key drivers of economic growth in the long run: 
population, total factor productivity, physical capital, employment and human capital, and energy and 
fossil fuel resources (specifically oil and gas). The projections are subject to large uncertainties, particularly 
for the later decades, and disregard a wide range of country-specific drivers of economic growth that are 
outside the narrow economic framework, such as external shocks, governance barriers and feedbacks 
from environmental damage. Hence, they should be interpreted with sufficient care and not be treated 
as predictions, but instead as scenarios that are consistent with the qualitative narratives embodied by 
the SSP (Dellink et al. 2017). In this work, national-level GDP is used along with population scenarios to 
derive GDP per capita, a proxy for income/wage rates and an important driver of cross-boundary 
migration.  

4.8 The Global Human Settlement Layer (GHSL) 
The Global Human Settlement Layer, produced by the Joint Research Center (JRC) of the European 

Commission, is a remote sensing-derived global data product that represents built-up land for different 
points in time over 40 years (1975, 1990, 2000, and 2014) at approximately 38 meters resolution, 
aggregated to 250 meters (Corbane et al. 2018). The original resolution data are binary, indicating either 
the presence or absence of a built structure in each 38 meter grid cell (Pesaresi et al. 2013; 2016). The 
aggregated data are constructed from the 38 meter cells to quantify the percentage of each cell that is 
built-up. This construction implies an aggregation of the original data to 304 meters and a subsequent 
resampling step to 250 meters to facilitate compatibility with other 1 kilometer global land cover and 
population data products. A recent validation study has generally confirmed the accuracy of the GHSL 
data layers for the different points in time in urbanized settings but also reported higher levels of 
classification errors in rural regions (Leyk et al. 2018). 

4.9 The Global Human Settlement Population Grid (GHS-Pop) 
GHS-Pop is a high-resolution spatial raster dataset that depicts the distribution and density of 

population, expressed as the number of people per cell at 250 meter and 1 kilometer resolution for 1975, 
1990, 2000, and 2015 (Schiavina et al 2019). To derive residential population estimates for each period, 
population data from census or administrative units, provided by the Center for International Earth 
Science Information Network (CIESIN) Gridded Population of the World v4 (GPW), were disaggregated to 
grid cells. The process was guided by the distribution and density of built-up area as indicated by the GHSL 
global layer for each period. The GPW gridded distributions are minimally modeled population counts (or 
population density grids) produced using the best (highest resolution) available administrative census 
data for each time period. Data are transposed from census units to grids proportionally according to the 
area of each census unit comprised by each grid cell after masking for water and ice (CIESIN 2016). The 
algorithm does not change over time, ensuring consistency and comparability across census periods. In 
this work the 2015 distribution of GHS-Pop serves as the base-year distribution for the internal migration 
model, and the historic distributions (1990, 2000) are included for model testing and validation. 

4.10 Diaspora 
 The presence and size of a foreign-born population within a host country is often indicative of the 
strength of social networks that exist between sending and receiving nations. In this work, we use the 
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foreign-born population in each Central American country (and the United States) originating in another 
Central American country as a measure of the strength of the social connection between countries. 
Migrant stock data are from the United Nations Department of Economic and Social Affairs - Population 
Division, and they are expressed as counts (UN 2017). 

4.11 Population Age and Sex Structure 
Spatial data on the age and sex distribution per grid cell was obtained from the Gridded 

Population of the World Version 4.10 Basic Demographic Characteristics (CIESIN 2017). Data on median 
age and the sex ratio (males as a percent of female population) were used to calibrate the model by 
establishing the relationship between spatial population change and demographic characteristics of the 
population. For future projections, we assume that variability in sex ration and median remain constant 
over space. 

4.12 Elevation, Slope, Surface Water, and Mandate for Protection 
The spatial population model includes a geospatial mask that acts as a multiplier, proportionally 

scaling the population potential for each grid cell as a function of the area within each cell deemed suitable 
for human habitation. We construct the mask from four geospatial data layers: surface water, elevation, 
slope, and protected land. We overlay these data to produce a single mask from which we extract the 
portion of each cell suitable for habitation. We use the ESRI World Water Bodies (DeLorme 2013) dataset 
to mask global surface water. Elevation and slope data are from the Global Multi-Resolution Terrain 
Elevation Data 2010 (GMTED2010; Danielson and Gesch 2011). We use the elevation of the highest 
permanently populated settlement in each continent as a ceiling to exclude land from future habitation 
as a function of high elevation. In general, development costs increase substantially on land exhibiting a 
slope greater than 15%, which is also the point at which many municipalities impose development 
regulations (e.g. Theilacker and Anderson 2010). Here we account for the likelihood that improved 
technology will reduce the costs associated with excess slope and instead impose a threshold of 25%, an 
oft-cited “no-development” threshold in municipal regulations across the United States (Houck 2005). 
Finally, we use the International Union for the Conservation of Nature (IUCN) World Database on 
Protected Areas (WDPA) to mask land as a function of mandate for protection (IUCN 2015). Specifically, 
any area classified under IUCN categories Ia (strict nature reserve), Ib (wilderness area), II (national park), 
III (national monument or feature), or IV (habitat/species management area) is masked as not suitable for 
development/habitation. 

In some cases, we found existing base-year population in cells otherwise completely masked as a 
function of mandate for protection. There are two possible explanations. First, the algorithm used to 
distribute the existing population across grid cells in the GPW base-year data does not specifically account 
for protected land, and as such population and protected land may overlap in the base-year. Second, in 
many cases new mandates for protection grandfather in existing populations (e.g. people living in newly 
designated national forest land in the United States). For modeling purposes, we treat both of these cases 
identically. For example, cells that are 100% masked as a function of mandate for protection are not 
eligible to receive any projected future population growth. However, these cells are allowed to lose people 
during periods of population decline. This decision reflects our perception of real-world population 
change in areas with both existing population and prohibitions on new development. 
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5. Modeling Methods 

The modeling approach, broadly, consists of two modules that are loosely coupled over time. 
First, the international model projects five-year movement across international boundaries2 within 
Central America and Mexico, to and from the United States, and to and from the rest of the world 
(aggregate). International movement is then fed into the second component of the model at each five-
year time step, the internal model. The internal migration model projects population change over 1 
kilometer grid-cells within each country individually. 

5.1 International Model 
 While there is currently little empirical evidence to suggest that the large-scale movement of 
people across national boundaries is a likely consequence of climate change across large regions of the 
globe, there is also very little in the way of historic precedent for the environmental changes likely to 
occur as a result of a shifting climate. Here we introduce a method for identifying origin-destination 
international migration flows that could potentially intensify or decline as a result of environmental 
change. We take advantage of existing bilateral flow data (Abel and Cohen 2019), to train and project 
our model as a function of sectoral impacts (crops, water, NPP), political instability and corruption, 
global income levels (GDP per capita), and the existing diaspora, to estimate potential changes in origin-
destination flows under the five alternative futures (RCP/SSP combinations) noted above. The proposed 
international model will operate at the country level, and we apply the model to each of the proposed 
RCP/SSP scenarios. 
 

5.1.1 Procedure 
The Abel and Cohen (2019) international migration flow data include origin-destination counts of 

migrants for each of four periods: 1990-1995, 1995-2000, 2000-2005, 2005-2010. From these data, we 
will calculate historic outmigration rates for each country over each of the four periods. We will then 
model national-level outmigration as a function of the components from Table 1 using a Poisson log-linear 
regression model:  
 

log(m𝑖𝑗,𝑡) = ∝ + 𝛽1𝐺𝑖𝑗,𝑡 + β2𝑉𝑖,𝑡 + β3𝐶𝑖,𝑡 + β4𝐴𝑖,𝑡 + β4𝑊𝑖,𝑡 + β4𝐷𝑖𝑗,𝑡 + log (𝑃𝑖,𝑡)  (Eq. 4) 

 
where m𝑖𝑗,𝑡 is the count of migrants from country i to j at time t, G is the difference in GDP per capita 

between country i and j, V is the value of the instability/violence index, C is the value of the corruption 
index, A is the five-year deviation of crop yield/NPP from historic baseline, W five-year deviation in water 
availability from historic baseline, D is the size of the population born in country i currently residing in 
country j, and 𝑃𝑖,𝑡  is the population of country i at time t.  
 

 
2 The SSP population projections include an estimate of international migration based on an existing global-level 
matrix of in- and out-migration (Abel and Sander 2014) and adjusted to reflect assumptions regarding, for 
example, conflict and political changes and the degree of openness of national borders in each SSP (O’Neill et al. 
2015). As this study builds on the SSPs, by definition it also includes the bilateral migration flows included in the 
national-level population projections that correspond to each SSP (Samir and Lutz 2014). For SSP1 these flows are 
in the middle of the range , for SSP3 they are low, and for SSP5 they are high. 
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5.1.2 Validation 
 Validation of the international model was carried out in a relatively straightforward fashion. To 
validate our approach, we will fit the model to the observed bilateral flow data for the period 1990-1995 
and projected migration flows for the subsequent three periods: 1995-2000, 2000-2005, 2005-2010. 
Errors varied substantially over time, ranging from lows hovering between 1% and 5%, to over 80% in 
some of the lesser traveled migratory routes (e.g., Belize to Panama, which average less than 100 
migrants in each five-year period). Like many similar models, it is very difficult to project shocks that 
might dramatically change migratory flows, particularly sudden economic crises and/or wars. As such, 
error tends to be higher when unexpected shocks occur. Conversely, the model performs at a higher 
level when conditions in the sending and receiving countries of any given flow remain somewhat stable 
and predictable. 
  

5.2 Internal Model 
Hugo (1996) shows that the majority of environmental migrants stay close to their former home 

and within the boundaries of their country. Similarly, the vast majority of future climate migrants and 
displaced persons are expected to move internally (e.g., Raleigh et al. 2008; Waldinger 2015; Hugo 1996). 
Measuring internal migration is challenging as there is no standard definition regrading what constitutes 
a migration (e.g., distance or temporal duration). Furthermore, the lack of consistent data regarding 
historic migration patterns in many countries confounds efforts to model future migration. 

5.2.1 The Gravity Model 
The model adopted in this work is based the approach from the Groundswell report (Rigaud et al. 

2018), which itself was adapted from the INCLUDE gravity-based downscaling model (Jones and O’Neil 
2013, 2016). The INLCUDE model downscales national population projections to subnational raster grids 
as a function of geographic, socioeconomic, and demographic characteristics of the landscape and existing 
population distribution. Gravity-type approaches, commonly used in geographic models of spatial 
allocation and accessibility, take advantage of spatial regularities in the relationship between population 
agglomeration and patterns of population change. These relationships can then be characterized as a 
function of the variables known to correlate with spatial patterns of population change.  

The INCLUDE model uses a modified form of population potential, a distance-weighted measure 
of the population taken at any point in space that represents the relative accessibility of that point (for 
example, higher values indicate a point more easily accessible by a larger number of people). Population 
potential can be interpreted as a measure of the influence that the population at one point in space exerts 
on another point. Summed over all points within an area, population potential represents an index of the 
relative influence that the population at a point within a region exerts on each point within that region, 
and (Rich 1980) it can be considered an indicator of the potential for interaction between the population 
at a given point in space and all other populations. Population potential will typically be higher at points 
close to large populations, thus it is also an indicator of the relative proximity of the existing population 
to each point within an area (Warntz and Wolff 1971). Historically, population potential is often 
considered as a proxy for attractiveness, under the assumption that agglomeration is indicative of the 
various socioeconomic, geographic, political, and physical characteristics that make a place attractive.  

For this assessment, the calculation of potential was modified primarily by adding variables that 
describe local/regional conditions, including climate impacts on economic livelihoods, and weighting the 
attractiveness of each location (grid cell) as a function of the historic relationship between these variables 
and observed population change. Population potential is, conceptually, a relative measure of 
agglomeration, indicating the degree to which amenities and services are available. In the INLCUDE model, 
this value shifts over time as a function of the population distribution, assumptions regarding spatial 
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development patterns (e.g., sprawl vs. concentration), and of certain geographic characteristics of the 
landscape. The Groundswell approach expanded the model by considering the local impact of climate on 
certain key sectors. In this further expanded version of the model, the agglomeration effect is enhanced 
or muted as a function of additional local characteristics that aid in differentiating between places. 
Furthermore, the version of the model applied here operates at high resolution (1 kilometer) and 
considers cross-boundary influences. 

Beginning with the 2015 gridded population distribution for each country, the model estimates 
changes in the spatial population distribution (including the impact of climate change) in five-year time 
steps by (1) calculating a population potential surface (a distribution of values reflecting the relative 
attractiveness of each grid cell), and (2) allocating population change to grid cells proportionally based on 
potential. To generate estimates of internal migration under climate change, we then run a set of 
scenarios that exclude the impacts of climate change. That is, we hold the values for all variables that are 
influenced by climate change constant at current day values (crop, water, NPP, heat extremes, flood 
hazard, and sea-level). The difference in population distribution between the five primary scenarios and 
these “no-climate” scenarios is attributed to migration induced by changing conditions, as the only 
variables that have changed are those impacted by a shifting climate. Figure 3 provides a full flowchart of 
the modeling steps. 

 



 

  

Figure 3. Flowchart of modeling steps (adapted from Rigaud et al. 2018) 

* The counterfactual population projection simply scales the population distribution in 2010 to country-level population totals appropriate to each SSP.  
** The no climate impacts projection does not include any climate impacts (i.e., based only on the development trajectories embodied in the SSPs and the conflict and age and 
sex characteristics of the baseline population). 
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In this modified version of the INCLUDE model, population potential (vi) is calculated as a parametrized 
negative exponential function: 

 

        (Eq. 5)                        

 

 

where spatial mask (l) prevents population from being allocated to areas that are protected from 
development or unsuitable for human habitation, including areas that will likely be affected by sea level 
rise between 2010 and 2050. 𝑃𝑗  is the population of grid cell j, and d is the distance between two grid 

cells. The population and distance parameters (α and β) are estimated from observed patterns of 
historical population change. The β parameter is indicative of the friction of distance or the cost of travel 
that generally determines the shape of the distance–density gradient in and around urban areas (e.g., 
sprawl vs. concentration). The α parameter captures returns on agglomeration externality, interpreted as 
an indicator of the characteristics that make a place more or less attractive.  

Importantly, the SSPs include no climate impacts on aggregate total population, urbanization, or 
the subnational spatial distribution of the population. The INCLUDE approach was modified by 
incorporating additional spatial data including the ISIMIP sectoral impacts, projections of groundwater 
availability, flood hazard, and extreme heat, demographic characteristics of the population, and 
characteristics of the built environment, all of which are likely to affect population outcomes. The index 
𝐴𝑖 is a weight on population potential that is calibrated to represent the influence of these factors on the 
agglomeration effect that drives changes in the spatial distribution of the population. All of the data are 
incorporated into the model as 1 kilometer gridded spatial layers. The ISIMIP data represent five-year 
deviation from long-term baseline conditions, the demographic data are observed median age and sex 
ratio, and conflict-related fatalities are interpolated from point data. The value 𝐴𝑖 is calculated as a 
function of these indicators. Numerically, it represents an adjustment to the relative attractiveness of (or 
aversion to) specific locations (grid cells), reflecting current water availability, crop yields, and ecosystem 
services relative to “normal” conditions, as well as the demographic composition of the population and 
the likelihood of dangerous conflict. 

5.2.2 Calibrating the Model 
The model is calibrated over two decadal periods (1990–2000 and 2000–2015) of observed 

population change relative to observed climatic, demographic, and socioeconomic conditions. As noted 
above, the value 𝐴𝑖 is calculated as a function of these different climatic, demographic, and socioeconomic 
indicators and acts as an adjustment to relative attractiveness. In order to carry out the procedure, model 
estimates of the α and β parameters are necessary, and 𝐴𝑖 must be calibrated. Two separate procedures 
are employed. 
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The α and β parameters are designed to capture broad-scale patterns of change found in the 

distance-density gradient, which is represented by the shape/slope of the distance decay function from 

Equation 5. The negative exponential function described by Equation 5 is very similar to Clark’s (1951) 

negative exponential function, which has been shown to accurately capture observed density gradients 

throughout the world (Bertaud and Malpezzi 2003). To estimate α and β, the model in equation 5 is fitted 

to the 1990-2000 and 2000-2015 population change from GHS-Pop, and we compute the values of α and 

β that minimize the sum of absolute deviations: 

 

𝑆(𝛼, 𝛽) = ∑|𝑃𝑖,𝑡
𝑚𝑜𝑑 − 𝑃𝑖,𝑡

𝑜𝑏𝑠|

𝑛

𝑖=1

 

            (Eq. 6) 

 
where 𝑃𝑖,𝑡

𝑚𝑜𝑑 and 𝑃𝑖,𝑡
𝑜𝑏𝑠 are the modeled and observed populations in cell i, and S is the sum of absolute 

error across all cells. We fit the model for two time steps (1990-2000 and 2000-2015) and take the 

average of the α and β estimates.  

In this modified version of the population potential model, the index 𝐴𝑖 is a cell-specific metric 

that weights the relative attractiveness of a location (population potential) as a function of environmental 

and/or socioeconomic conditions. The modeling approach requires that the relationship between 𝐴𝑖 and 

the different local indicators is estimated, which are hypothesized to impact population change. When α 

and β are estimated from historic data (e.g. observed change between 2000 and 2015), a predicted 

population surface is produced that reflects optimized values of α and β, such that absolute error is 

minimized. Figure 4 includes a cross section (one dimension) of grid cells illustrating observed and 

predicted population for 10 cells. Each cell contains an error term that reflects the error in the population 

change projected for each cell over a 10-year time step. It is hypothesized that this error can at least 

partially be explained by a set of omitted variables, including environmental/sectoral impacts. To 

incorporate these effects, we first calculate the value of 𝐴𝑖 such as to eliminate 𝜀𝑖 (from Figure 4) for each 

individual cell (which is labeled observed 𝐴𝑖): 

 

∆𝑃𝑖,𝑡
𝑜𝑏𝑠 = 𝐴𝑖 ∗ ∆𝑃𝑖,𝑡

𝑚𝑜𝑑      (Eq. 7) 

 
where ∆𝑃𝑖,𝑡

𝑜𝑏𝑠  and ∆𝑃𝑖,𝑡
𝑚𝑜𝑑 are the observed and modeled population change for each cell i and 𝐴𝑖 is the 

factor necessary to equate the two. 

 
The second step is to estimate the relationship between observed index 𝐴𝑖 and the different potential 

drivers of spatial population metrics by fitting a spatial lag model: 

 
𝐴𝑖,𝑡 = 𝜌𝑊𝐴𝑖,𝑡+ 𝛽1𝐶𝑖,𝑡 + 𝛽2𝐻𝑖,𝑡 + 𝛽3𝑁𝑖,𝑡 + 𝛽4𝐹𝑖,𝑡 + 𝛽4𝐸𝑖,𝑡 + 𝛽4𝑊𝑖,𝑡 + 𝛽5𝑀𝑖,𝑡 + 𝛽6𝑆𝑖,𝑡 + 𝛽7𝐾𝑖,𝑡 + 𝜀𝑖,𝑡 (Eq. 8) 
 

where C,H and N are the five year deviations from the historic baseline on crop yield, water availability, 

and net primary production, respectively, F is the flood risk metric, W is groundwater availability, E is 

incidents of extreme heat, M is median age, S is sex ratio expressed as (male/female), and K is the built-

up metric (GHSL). Together these nine variables and their respective coefficients constitute the set of 

explanatory variables that go into producing index 𝐴𝑖. Note that for any grid cell in which C (crop yield) 

is a non-zero value, the value of N (net primary production) is automatically set to zero, so that only one 
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of the two variables is contributing to the index 𝐴𝑖. Finally, 𝜌 is the spatial autocorrelation coefficient and 

W is a spatial weight matrix. From this procedure, a set of cell specific A values is estimated.  

 

Figure 4: Cross section of grid cells illustrating observed and projected population distributions. Note: The error term is used to 
calibrate the index A(i). 

 

For future projections (for urban and rural populations), projected values of each independent 

variable are used along with their respective coefficient estimates from Equation 8 to estimate spatially 

and temporally explicit values of 𝐴𝑖. Finally, to produce a spatially explicit population projection, 

estimates of α and β are adjusted to reflect the SSPs (e.g. the SSP1 storyline implies a more 

concentrated pattern of development than SSP5, see Jones and O’Neill 2016) to produce estimates of 

the agglomeration effect, to which the spatio-temporally variant estimates of 𝐴𝑖 for the RCPs described 

above are applied, and finally exogenous projections of national urban and rural population change are 

incorporated and the model applied as specified above. 

Past testing of the model indicated that cells meeting certain criteria should be excluded from 

the calibration procedure. First, cells that are 100% restricted from future population growth by the 

spatial mask (l, Equation 5) are excluded, as the value of 𝑣𝑖 in these cells (0) renders the observed value 

of 𝐴𝑖 inconsequential. Second, the rural and urban distributions of observed 𝐴𝑖 were found to include 

significant outliers that skewed coefficient estimates in Equation 8. In most cases, these values were 

found to correspond with very lightly populated cells where a small over/under prediction of the 

population in absolute terms (e.g. 100 persons) is actually quite large relative to total population within 

in the cell (e.g. large percent error). The value of 𝐴𝑖 (the weight on potential), necessary to eliminate 

these errors, is often proportional to the size of the error in percentage terms, and thus can be quite 

large even though a very small portion of the total population is affected. Including these large values in 

Equation 8 would have a substantial impact on coefficient estimates. To combat this problem, the most 

extreme 2.5% of observations are eliminated on either end of the distribution. Third, because the model 

is calibrated to urban and rural change separately, cells in which rural population was reclassified as 

100% urban over the decade (2000-2015) were excluded, as the effect would be misleading (in the rural 

distribution of change it would appear an entire cell was depopulated, while in the urban change 
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distribution the same cell would appear to grow rapidly). It would be incorrect to attribute these 

changes to sectoral impacts when, in fact, they are the result of a definitional change. In most cases, 

these exclusions eliminate 5-10% of grid cells. 

5.2.3 Estimating Internal Climate Migrants 
Gravity models do not directly model internal migration. Instead, internal migration is assumed 

to be the primary driver of deviations between population distributions in model runs that include climate 
impacts and the development-only (the “no climate” models) that include the non-climate related 
drivers). Migration is a “fast” demographic variable compared with fertility and mortality; it is responsible 
for much of the decadal-scale redistributions of population (Rigaud et al. 2018). Without significant 
variation in fertility/mortality rates between climate-migrant populations and non-migrant populations, 
it is fair to assume that differential population change between the climate impact scenarios and the 
development-only scenarios occur as a function of migration. Thus, for each grid cell we consider the 
impact of climate change to be the difference between the “climate” and “no-climate” scenario (e.g. 
SSP3/RCP8.5 vs. SSP3/No-Climate). To estimate total internal migration under any scenario, we sum the 
positive differences at the grid-cell level between any scenario and its corresponding no-climate scenario. 

6. Limitations 
The model adapted and applied in this work is a “top-down” type model that is designed to 

capture and estimate broad trends in spatial population change. This type of approach is well suited for 
large-scale application over larger regions or globally, and it has been shown to, in general, capture and 
replicate observed patterns of broad spatial change with a high degree of accuracy (Jones and O’Neill, 
2013). However, this type of approach does come with certain limitations. Furthermore, any attempt to 
estimate future patterns of climate migration will carry with it certain limitations, regardless of the 
choice of model. In this section, we discuss limitations both directly related to the modeling applied 
here, and more broadly to models of climate migration in general.  

6.1 Uncertainty 
 Modeling certain human behaviors, such as migration, is often fraught with uncertainty. Adding 
the dimension of climate change to such an exercise will compound existing uncertainty. Broadly, 
uncertainty exists in both the socioeconomic and physical (climatic) dimensions of the modeling applied 
here — both the international and internal models. Here we will discuss the primary sources of 
uncertainty in more detail.  

Beginning on the physical/climate side, for each climate migration scenario (SSP/RCP 
combination), the model produces a range of estimates that reflect variation in the underlying inputs to 
the model. Five of these inputs (crops, water, NPP, flood hazard, and heat extremes) vary over time as a 
function of climate, meaning they take different values and distributions as a function of the prescribed 
climate scenario (RCP) and the model that was used to produce them (e.g., global climate model; 
sectoral impact model). Variation across RCPs reflects uncertainty regarding the future degree to which 
climate change will occur and, in turn, impact migration. Conversely, variation across models within the 
same RCP reflects scientific uncertainty over climate processes (e.g., different results across global 
climate models under the same RCP) and climate impacts on each of the variables that impact the 
migration decision. In any scenario, outcomes are a function of the global climate models, the sectoral 
impact models, and the flood/heat models that drive climate impacts on population change. For each of 
the five scenarios, there are four models (ensemble members), consisting of different global climate 
model/ISIMIP/flood hazard/heat combinations. The ensemble mean (or average) of the four models is 
reported as the primary result for each scenario. Uncertainty is reflected in the range of outcomes 
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(across the four models) for each grid cell and at different levels of aggregation. The scenario-based 
approach is preferable to adopt a single model in this type of research precisely because of the 
uncertainty surrounding many of the inputs and the outcomes, and attention should be given to the 
variation across the full ensemble for each SSP/RCP scenario. 

The remaining inputs to the internal model, age structure, sex ratio, built-up land, and 
groundwater, are held constant into the future, primarily because we don’t have projections of these 
factors will evolve at 1 kilometer resolution over time. Attempting to model change in these factors is 
beyond the scope of this work, it and would introduce more uncertainty into the model. In the absence 
of projections, the conservative decision is to hold values constant, however, it is also quite likely that 
this assumption will be incorrect, and as such one must consider the impact of this decision on the 
results. Similarly, in the international model the metrics representing stability and corruption are held 
constant. History, however, indicates that Central America has experienced its fair share of change, 
going through periods of increasing and decreasing political stability, for example. It is very difficult to 
predict political change and/or shocks, and we don’t attempt to do so here, so one must interpret the 
international migration results as assuming unchanged levels of political stability, which again is an 
uncertain outcome. 

The SSPs were designed to encompass a wide range of conditions in support of the scenario-
based approach to climate impacts, and in this regard they are extremely useful. However, there is a fair 
degree of uncertainty around the demographic (population) and socioeconomic (GDP) assumptions and 
projections that accompany each scenario. For example, the national-level population projected for 
each country under each scenario depends on assumptions regarding future age-specific fertility and 
mortality, education, wealth, and broad assumptions regarding international mobility. Each one of these 
components will impact population outcomes, and deviation from the assumed level of each input can 
lead to substantial variation in outcomes. We cannot assess this uncertainty in the same way that we 
can the uncertainty in climate models, as each SSP is accompanied by a single projection produced by a 
single model. That said, it should be considered when interpreting the results of this work that the 
assumptions that go into each SSP are subject to error. 

A further source of uncertainty relates to the calibration of the model. We have at our disposal 
only a very short historic record from which to estimate the empirical relationship between population 
change and the hypothesized drivers. Additionally, we have only a few countries in which the historic 
data are of higher quality and compiled over the appropriate spatial units (Mexico, Guatemala, Belize, 
and El Salvador). As such, the empirical relationship identified in the calibration of the model is itself 
subject to uncertainty. 

Finally, and related to the aforementioned sources of uncertainty, is the temporal and spatial 
momentum that sometimes develops within the model. The modeling has a temporal component that 
can influence population distribution trajectories. Stronger sectoral impacts early in the 35-year 
projection period will have greater influence than the same impacts later in that period, because those 
early impacts affect the gravitational pull of locations, creating “temporal” momentum over which later 
climate impacts may have less influence. Similarly, the timing of population change (growth or decline) 
projected by the SSPs relative to the development of sectoral impacts can influence outcomes. For 
example, for most countries in the study, projected population growth is greatest during the first 
decade; if conditions are also predicted to deteriorate severely during that period, the impact on 
migration will be greater than if the deterioration took place during a more demographically stable 
period. Similarly, the relative location of predicted positive or negative climate impacts may produce 
substantial nodes of growth or decline, particularly if they fall over regions with larger populations and 
take place earlier in the 40-year period. Put more simply, time and space matter, and the degree to 
which the inputs to the model project a confluence of events over time and space will substantially 
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impact outcomes. Thus, variations in the projected timing and location of certain changes will lead to 
increased temporal and spatial variation in outcomes. 
 

6.2 Non-Linear Changes 
The model applied in this assessment is empirically estimated using historic data. We do so to 

identify how people have responded to certain climate and non-climate related factors in the past. This 
information is used to inform our projections into the future, importantly, under the assumption that 
people will continue to respond in the same manner. In this sense the model is linear. For example, if a 
5% decrease in water availability has, in the past, led to a 2% decline in the population of a given region 
through out-migration, then given a future projection of a 10% decrease in water availability in the same 
region (holding all other factors constant) our model will project a 4% decline in population due to out-
migration. The assumption of linearity should be considered conservative, as it is widely posited that the 
human response to climate stimuli will vary as a function of the intensity of that stimuli. More simply, 
this is to say that as water scarcity worsens, it is not illogical to believe the percent of the population 
making the decision to leave might rise. Here we have chosen to use only information that can be 
historically verified to drive our model as opposed to making assumptions regarding how the human 
response might change as the intensity of conditions changes. We do so, in part, because the conditions 
projected by the climate models are, in many cases, outside the range of historic conditions for which 
we have observations, thus we have no empirical data to predict how the response might vary.  
 In light of this decision, the intensity of climate migration projected in this work should be 
considered conservative. Given the conditions projected by the climate models across much of Central 
America and Mexico (over which there is a fair degree of uncertainty), it is more likely that our model 
will underestimate mobility rather than overestimate, if all other potential drivers are held constant. 
 

6.3 Defining Migrants 
As mentioned above, there is no consensus on the definition of a “climate migrant.” Because 

our modeling approach extrapolates climate migrants by comparing scenarios that include projections 
of future climate change with projections that assume no change, we can feel confident asserting that 
climate was a factor in the outcome. However, the top-down type of model applied here does not 
capture all the dimensions of so-called climate migration. First, the temporal and spatial scale of the 
model is instrumental in determining who is a migrant. For example, the model iterates over five-year 
periods and the 1 kilometer results are aggregated to 7.5’ grid cells. It is at this spatio-temporal 
resolution that we compare the climate and no-climate scenarios to extrapolate estimates of climate-
induced migration. Thus, to be considered a migrant a person has to be located in a grid cell different 
from the one they were located in five years earlier. Practically, this means a person must move roughly 
10 kilometers minimum and remain in the new location for a prolonged period of time. Within these 
parameters, we are capturing/projecting more of the long-term, longer distance migration that results 
from slow-onset change. Missing from these projections would be short-term migrants who return 
home after a sudden onset event like a storm, or seasonal migrants who begin looking for short-term 
work in urban areas to supplement declining farm income. 

Top-down models of migration are designed to estimate the aggregate results of household-
level decisions that influence migration (de Sherbinin et al. 2008), but they do not build directly on the 
evidence (or data) from microlevel studies. It considers such factors only at an aggregate level. The focus 
is on the 30 years between 2020 and 2050. This period represents a meaningful planning horizon, 
especially when considering social dimension of migration at the national and international level. A 
consequence of the decision to focus on these factors, however, is that behaviors related to climate 
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change that take place over shorter time periods or shorter distances (e.g., moving back from an 
encroaching coastline) are not included here, and one must be careful when attributing the results to 
certain household-level behaviors. 

6.4 Trapped Populations 
The modeling for this analysis was designed explicitly to assess mobility. Unanticipated, climate-

induced migration has the potential to be politically and practically disruptive to both sending and 
receiving regions. Properly assessed and planned for, climate-migration will present opportunities that 
both sending and receiving regions may capitalize on, thus the focus on mobility is justified and critical. 
However, often overlooked is another critical group, so-called trapped populations. Trapped populations 
comprise those people who, given the resources to do so, would likely respond to climate 
change/hazards by moving but for various reasons find themselves unable to do so. Unsurprisingly, 
socioeconomic hurdles are often to blame for the immobility of trapped populations, as many are simply 
too poor or lack the necessary resources to move. Others may be unable to move because of health 
considerations or family responsibilities. Trapped populations are among the most vulnerable to 
climate-related hazards, as they reside in locations that are experiencing adverse conditions, and they 
generally lack the economic resources not only to move, but also to adequately adapt in place.  

For two primary reasons, the approach applied in this work is unable to estimate trapped 
populations. Theoretically, trapped populations are included in the spatially explicit projections 
produced by the model, as the parameters calibrated from the historic data reflect the degree to which 
people respond to different stimuli. Trapped populations, broadly, don’t respond, and thus the presence 
of trapped populations in the historic data would, again theoretically, weaken the estimated response. 
However, the model has no way to determine who is choosing not to move and who is simply unable to 
move. In the presence of adverse conditions, those who choose not to move are often capable of 
adapting to new conditions in place, indicating access to resources. Trapped populations, those who 
would move if they could, do not enjoy the same adaptive capacity. Secondly, and related, because our 
approach is based on modeling aggregate trends as opposed to household-level decisions (the latter 
being a “bottom-up” approach more typically applied in studies considering smaller geographic regions), 
we are unable to explicitly model the decision not to migrate due to lack of resources. 

It is important to acknowledge the presence of this population, and in the academic literature it 
is widely suggested that future work focus more specifically on this particularly vulnerable population. It 
is, however, beyond the scope of this work to do so.  
 

6.5 A Final Word on the Results 
The description of model limitations is meant, primarily, to aid in interpreting the results of this 

assessment. Broadly, the outcomes presented here should be considered as a series of possible futures 
contingent on a set of assumptions, a set of “what if” scenarios. None of the scenarios should be 
considered a “most-likely” outcome, nor should the emphasis be on the any one projection of the total 
magnitude of migration. Instead, it is the variation across the different scenarios that should be 
considered as a starting point for discussions of potential policy intervention, areas that require 
additional research, or simply to start focusing questions that will be critical to anticipating and planning 
for climate-induced migration appropriately. Furthermore, the geographic information presented here 
(e.g. international flows, sub-national hot spots) should help to focus the attention of planners and 
policymakers on regions that are very likely to experience impacts, be it in- or out-migration. Even if 
there is uncertainty in the likely magnitude of those impacts, identifying critical geographic zones is 
crucial to fine-tuning policy intervention. 
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Finally, the work presented here represents a step forward in complexity of the family of 
gravity-based top-down models for assessing climate-induced migration over large regions at high 
resolution. The modeling itself should be scrutinized and continued refinements applied. Modeling 
climate-induced migration is a very challenging undertaking, rife with uncertainty. This should not, 
however, preclude the scientific community from attempting to do so as the exercise itself is necessary 
to generate the important conversations that will allow society to effectively manage this challenge. 
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