Papers by Michael Ossipov
Anesthesia and Analgesia, 1989
This study was undertaken to evaluate the antinociceptive interactions of alpha 2 adrenergic and ... more This study was undertaken to evaluate the antinociceptive interactions of alpha 2 adrenergic and opiate receptors at the spinal level. Morphine and clonidine were administered intrathecally (i.t.) by lumbar puncture to rats either alone or in the presence of either i.t. yohimbine, an alpha 2 antagonist, or systemic naloxone, an opioid antagonist. The effect of tolerance to systematically administered morphine on responses to i.t. morphine and clonidine was examined in mice. Antinociception was determined by observing the response to a clamp applied to the tail (Haffner test) in mice and by the tail-flick test in rats; log dose-response curves for antinociception were generated for morphine, clonidine, and each drug combination. Morphine and clonidine both produced dose-dependent antinociception when given i.t. in both species. The i.t. administration of yohimbine attenuated the antinociceptive effect of both clonidine and morphine, but naloxone attenuated only the response to morphine. Further, a sub-analgetic dose of i.t. clonidine potentiated the effect of i.t. morphine. In morphine-tolerant mice, i.t. morphine was not efficacious whereas clonidine retained full efficacy, although potency was slightly diminished. Thus, it appears that alpha 2 adrenoceptor-mediated antinociception is independent of opiate receptor mechanisms. Clinical use of intrathecal combinations of alpha 2 adrenergic and opiate receptor agonists to increase analgesia and use of intrathecal alpha 2 agonists for pain relief in patients tolerant to opiates might deserve evaluation.
Neuroreport, 1995
Neuropathic pains have often been classified as opioid resistant. Here, the ability of systemic (... more Neuropathic pains have often been classified as opioid resistant. Here, the ability of systemic (i.p.), intracerebroventricular (i.c.v.) and intrathecal (i.th.) morphine to inhibit mechanical allodynia were studied in a nerve ligation (L5, L6 nerve roots) model of neuropathic pain in rats. Morphine administered i.p. or i.c.v. produced dose-dependent antiallodynia which was readily antagonized by naloxone (5 mg kg-1, i.p. at -10 min). In contrast, i.th. morphine at doses up to 100 micrograms was without effect. These data suggest that the failure of i.th. morphine to produce antiallodynic effects may be due, in part, to the lack of available functional spinal opioid mu-receptors which may occur following nerve injury. In contrast, the antiallodynic actions of i.p. or i.c.v. morphine appear to depend on supraspinal activation of opioid (mu?) receptors and subsequent activation of descending modulatory systems. The inconsistent data seen clinically with morphine in neuropathic pains may be related to the lack of supraspinal/spinal synergy that is normally associated with morphine efficacy in conditions of acute pain.
Proceedings of The National Academy of Sciences, 1999
Alterations in sodium channel expression and function have been suggested as a key molecular even... more Alterations in sodium channel expression and function have been suggested as a key molecular event underlying the abnormal processing of pain after peripheral nerve or tissue injury. Although the relative contribution of individual sodium channel subtypes to this process is unclear, the biophysical properties of the tetrodotoxin-resistant current, mediated, at least in part, by the sodium channel PN3 (SNS), suggests that it may play a specialized, pathophysiological role in the sustained, repetitive firing of the peripheral neuron after injury. Moreover, this hypothesis is supported by evidence demonstrating that selective ''knock-down'' of PN3 protein in the dorsal root ganglion with specific antisense oligodeoxynucleotides prevents hyperalgesia and allodynia caused by either chronic nerve or tissue injury. In contrast, knock-down of NaN͞SNS2 protein, a sodium channel that may be a second possible candidate for the tetrodotoxin-resistant current, appears to have no effect on nerve injury-induced behavioral responses. These data suggest that relief from chronic inf lammatory or neuropathic pain might be achieved by selective blockade or inhibition of PN3 expression. In light of the restricted distribution of PN3 to sensory neurons, such an approach might offer effective pain relief without a significant side-effect liability.
Pain, 2002
Neuropathic pain is a debilitating chronic syndrome that often arises from injuries to peripheral... more Neuropathic pain is a debilitating chronic syndrome that often arises from injuries to peripheral nerves. Such pain has been hypothesized to be the result of an aberrant expression and function of sodium channels at the site of injury. Here, we show that intrathecal administration of specific antisense oligodeoxynucleotides (ODN) to the peripheral tetrodotoxin (TTX)-resistant sodium channel, NaV1.8, resulted in a timedependent uptake of the ODN by dorsal root ganglion (DRG) neurons, a selective 'knock-down' of the expression of NaV1.8, and a reduction in the slow-inactivating, TTX-resistant sodium current in the DRG cells. The ODN treatment also reversed neuropathic pain induced by spinal nerve injury, without affecting non-noxious sensation or response to acute pain. These data provide direct evidence linking NaV1.8 to neuropathic pain. As NaV1.8 expression is restricted to sensory neurons, this channel offers a highly specific and effective molecular target for the treatment of neuropathic pain.
Neurons in the rostroventromedial medulla (RVM) project to spinal loci where the neurons inhibit ... more Neurons in the rostroventromedial medulla (RVM) project to spinal loci where the neurons inhibit or facilitate pain transmission. Abnormal activity of facilitatory processes may thus represent a mechanism of chronic pain. This possibility and the phenotype of RVM cells that might underlie experimental neuropathic pain were investigated. Cells expressing -opioid receptors were targeted with a single microinjection of saporin conjugated to the -opioid agonist dermorphin; unconjugated saporin and dermorphin were used as controls. RVM dermorphin-saporin, but not dermorphin or saporin, significantly decreased cells expressing -opioid receptor transcript. RVM dermorphin, saporin, or dermorphin-saporin did not change baseline hindpaw sensitivity to non-noxious or noxious stimuli. Spinal nerve ligation (SNL) injury in rats pretreated with RVM dermorphin-saporin failed to elicit the expected increase in sensitivity to non-noxious mechanical or noxious thermal stimuli applied to the paw. RVM dermorphin or saporin did not alter SNL-induced experimental pain, and no pretreatment affected the responses of sham-operated groups. This protective effect of dermorphin-saporin against SNL-induced pain was blocked by -funaltrexamine, a selective -opioid receptor antagonist, indicating specific interaction of dermorphin-saporin with the -opioid receptor. RVM microinjection of dermorphin-saporin, but not of dermorphin or saporin, in animals previously undergoing SNL showed a time-related reversal of the SNL-induced experimental pain to preinjury baseline levels. Thus, loss of RVM receptor-expressing cells both prevents and reverses experimental neuropathic pain. The data support the hypothesis that inappropriate tonic-descending facilitation may underlie some chronic pain states and offer new possibilities for the design of therapeutic strategies.
Pain, 2003
Experimental nerve injury results in exaggerated responses to tactile and thermal stimuli that re... more Experimental nerve injury results in exaggerated responses to tactile and thermal stimuli that resemble some aspects of human neuropathic pain. Neuronal hyperexcitability and neurotransmitter release have been suggested to promote such increased responses to sensory stimuli. Enhanced activity of Ca(2+) current is associated with increased neuronal activity and blockade of N- and P-types, but not L-type, calcium channels have been found to block experimental neuropathic pain. While T-type currents are believed to promote neuronal excitability and transmitter release, it is unclear whether these channels may also contribute to the neuropathic state. Rats were prepared with L(5)/L(6) spinal nerve ligation, and tactile and thermal hypersensitivities were established. Mibefradil or ethosuximide was administered either intraperitoneally, intrathecally (i.th.), or locally into the plantar aspect of the injured hindpaw. Systemic mibefradil or ethosuximide produced a dose-dependent blockade of both tactile and thermal hypersensitivities in nerve-injured rats; responses of sham-operated rats were unchanged. Local injection of mibefradil also blocked both end points. Ethosuximide, however, was inactive after local administration, perhaps reflecting its low potency when compared with mibefradil. Neither mibefradil nor ethosuximide given i.th. produced any blockade of neuropathic behaviors. The results presented here suggest that T-type calcium channels may play a role in the expression of the neuropathic state. The data support the view that selective T-type calcium channel blockers may have significant potential in the treatment of neuropathic pain states.
The nonopioid actions of spinal dynorphin may promote aspects of abnormal pain after nerve injury... more The nonopioid actions of spinal dynorphin may promote aspects of abnormal pain after nerve injury. Mechanistic similarities have been suggested between opioid tolerance and neuropathic pain. Here, the hypothesis that spinal dynorphin might mediate effects of sustained spinal opioids was explored. Possible abnormal pain and spinal antinociceptive tolerance were evaluated after intrathecal administration of [D-Ala 2 , N-Me-Phe 4 , Gly-ol 5 ]enke phalin (DAMGO), an opioid agonist. Rats infused with DAMGO, but not saline, demonstrated tactile allodynia and thermal hyperalgesia of the hindpaws (during the DAMGO infusion) and a decrease in antinociceptive potency and efficacy of spinal opioids (tolerance), signs also characteristic of nerve injury. Spinal DAMGO elicited an increase in lumbar dynorphin content and a decrease in the receptor immunoreactivity in the spinal dorsal horn, signs also seen in the postnerve-injury state. Intrathecal administration of dynorphin A(1-17) antiserum blocked tactile allodynia and reversed thermal hyperalgesia to above baseline levels (i.e., antinociception). Spinal dynorphin antiserum, but not control serum, also reestablished the antinociceptive potency and efficacy of spinal morphine. Neither dynorphin antiserum nor control serum administration altered baseline non-noxious or noxious thresholds or affected the intrathecal morphine antinociceptive response in saline-infused rats. These data suggest that spinal dynorphin promotes abnormal pain and acts to reduce the antinociceptive efficacy of spinal opioids (i.e., tolerance). The data also identify a possible mechanism for previously unexplained clinical observations and offer a novel approach for the development of strategies that could improve the long-term use of opioids for pain.
Neuroscience Letters, 2000
Evidence exists to indicate that tactile allodynia arising from peripheral nerve injury is integr... more Evidence exists to indicate that tactile allodynia arising from peripheral nerve injury is integrated predominately at supraspinal, rather than spinal, sites. In the present experiments, the possibility that disruption of descending pathways through the dorsolateral funiculus (DLF) might alter expression of nerve-injury induced tactile allodynia was explored. Male, Sprague±Dawley rats received L 5 /L 6 spinal nerve ligation (SNL). Lesions to the DLF were made ipsilateral or contralateral to SNL. Tactile allodynia was determined by measuring withdrawal thresholds to probing with von Frey ®laments. Rats with DLF lesions presented no apparent motor de®cits and did not alter sensory threshold in sham-SNL operated rats. DLF lesions made ipsilateral to SNL completely blocked tactile allodynia in SNL rats. Contralateral DLF lesions and sham surgery did not have any effect on SNL-induced allodynia. These results indicate that tactile allodynia after peripheral nerve injury is dependent upon tonic activation of net descending facilitation from supraspinal sites and support the hypothesis of tonic activation of descending facilitation as a basis for chronic pain. q
Paradoxical opioid-induced pain has been demonstrated repeatedly in humans and animals. The mecha... more Paradoxical opioid-induced pain has been demonstrated repeatedly in humans and animals. The mechanisms of such pain are unknown but may relate to opioid-induced activation of descending pain facilitatory systems and enhanced expression and pronociceptive actions of spinal dynorphin. Here, the possibility that these opioid-induced central changes might mediate increased excitability to the spinal cord was tested. Tactile and thermal hypersensitivity was observed at 7, but not 1, days after subcutaneous morphine pellet implantation; placebo pellets produced no effects. Basal and capsaicin-evoked release of calcitonin gene-related peptide (CGRP) was measured in minced spinal tissues taken from naive rats or rats on postpellet days 1 and 7. The content and evoked release of CGRP were significantly increased in tissues from morphine-exposed rats at 7, but not 1, days after implantation. Morphine increased spinal dynorphin content on day 7 in rats with sham bilateral lesions of the dorsolateral funiculus (DLF) but not in rats with DLF lesions. Pharmacological application of dynorphin A (2-13) , a non-opioid fragment, to tissues from naive rats enhanced the evoked release of CGRP. Enhanced evoked release of CGRP from morphine-pelleted rats was blocked by dynorphin antiserum or by previous lesions of the DLF. Sustained morphine induces plasticity in both primary afferents and spinal cord, including increased CGRP and dynorphin content. Morphineinduced elevation of spinal dynorphin content depends on descending influences and enhances stimulated CGRP release. Enhanced transmitter release may allow increased stimulusevoked spinal excitation, which is likely to be critical for opioidinduced paradoxical pain. Such pain may manifest behaviorally as antinociceptive tolerance.
Although injury-induced afferent discharge declines significantly over time, experimental neuropa... more Although injury-induced afferent discharge declines significantly over time, experimental neuropathic pain persists unchanged for long periods. These observations suggest that processes that initiate experimental neuropathic pain may differ from those that maintain such pain. Here, the role of descending facilitation arising from developing plasticity in the rostral ventromedial medulla (RVM) in the initiation and maintenance of experimental neuropathic pain was explored. Tactile and thermal hypersensitivity were induced in rats by spinal nerve ligation (SNL). RVM lidocaine blocked SNL-induced tactile and thermal hypersensitivity on post-SNL days 6-12 but not on post-SNL day 3. Lesion of RVM cells expressing -opioid receptors with dermorphin-saporin did not prevent the onset of SNL-induced tactile and thermal hypersensitivity, but these signs reversed to baseline levels beginning on post-SNL day 4. Similarly, lesions of the dorsolateral funiculus (DLF) did not prevent the onset of SNL-induced tactile and thermal hypersensitivity, but these signs reversed to baseline levels beginning on post-SNL day 4. Lesions of the DLF also blocked the SNL-induced increase in spinal dynorphin content, which has been suggested to promote neuropathic pain. These data distinguish mechanisms that initiate the neuropathic state as independent of descending supraspinal influences and additional mechanism(s) that require supraspinal facilitation to maintain such pain. In addition, the data indicate that these timedependent descending influences can underlie some of the SNLinduced plasticity at the spinal level. Such time-dependent descending influences driving associated spinal changes, such as the upregulation of dynorphin, are key elements in the maintenance, but not initiation, of neuropathic states.
Neuroscience Letters, 1995
Nerve ligation injury m rats produces increased sensitivity and exaggerated responses to nocicept... more Nerve ligation injury m rats produces increased sensitivity and exaggerated responses to nociceptive stimuli (hyperalgesia) as well as nociceptive responses 'to normally innocuous stimuli (allodynia) analogous to clinical conditions of neuropathic pain. However, the effect of nerve injury on .acute nociception has not been extensively studied. Nerve ligation injury was produced by unilateral ligation of the L.5 and L6 spinal roots of the sciatic nerve of male Sprague-Dawley rats. Intrathecal (i.th.) catheters were inserted for spinal drug administration. Response to acute nociception was measured by determining the latency to a rapid flick of the tail (TP) after immersion into a 55°C water bath before (control) and after i.th. morphine administration. No change in baseline response to the nociceptive stimulus was observed in either sham-operated or nerve-injured rats. In sham-operated rats, morphine produced dose-dependent antinociception with a 97 f 2.3% maximal possible effect (MPE) at a 6Opg dose; in these controls ASO (95% CL) was 22pg (17-3Opg). Morphine administered to rats with nerve injury also produced dose-dependent increase in TF latency, but an MPE of only 60 f 17% was obtained at 1OOpg; bigher doses elicited signs of behavioral toxicity. While it was not possible to produce a proper dose-response curve with i.th. morphine in animals with nerve injury, an estimation of the A50 showed approximately a four-fold loss of potency compared to sham-operated controls. Antinociception was readily reversed by naloxone (5 mg/kg, i.p.) in both groups. These data indicate that nerve ligation iniiury reduces the potency and efficacy of i.th. morphine. While the reasons for this loss of morphine activity in nerve injured animals are unknown, it is possible to speculate that (a) degeneration of primary afferents subsequent to nerve ligation injury might result in a loss of presynaptic opioid (mu?) receptors in the dorsal horn, thereby reducing the antinociceptive activity of morphine at the spinal level; (b) changes in the efficiency of post-receptor transduction may occur following nerve injury which can reduce opioid efficacy; (c) changes in levels of spinal neurotransmitters (e.g., cholecystokinin) may act to diminish opioid action; or (d) sustained afferent input from the site of the injury may be important in limiting the activity of opioids.
Anesthesiology, 1990
The antinociceptive interaction on the tail flick (TF) and hot plate (HP) tests between opioid an... more The antinociceptive interaction on the tail flick (TF) and hot plate (HP) tests between opioid analgesics and medetomidine after intravenous (iv) or intrathecal administration were examined by isobolographic analysis. Male Sprague-Dawley rats received fixed ratios of medetomidine to morphine, fentanyl, and meperidine of 1:10 and 1:30, 10:1, and 1:3, respectively, by iv administration or 10:1, 3:1 and 10:1, and 1:3 by intrathecal administration, respectively. Data were expressed as the percentage maximal possible effect (%MPE). The A50 (dose producing 50% MPE) for each drug or drug combination was determined from the dose-response curve. Isobolographic analysis revealed that the effect of medetomidine combined with fentanyl, morphine, or meperidine was additive after iv administration. The intrathecal administration of combinations of medetomidine with the opioids produced a synergistic antinociceptive effect in the TF but not HP test. These data confirmed that the interaction between medetomidine and opioids in producing antinociception may be additive or synergistic, depending on the route of administration, drug ratio administered, and level of processing of the nociceptive input (i.e., spinal vs. supraspinal). Moreover, these results were consistent with a spinal role for alpha-2 adrenoceptors in mediating antinociception. The authors suggest that the interaction between the opioid and alpha-2 adrenergic receptors occurs within the spinal cord.
Pain, 1999
Tactile allodynia and thermal hyperalgesia, two robust signs of neuropathic pain associated with ... more Tactile allodynia and thermal hyperalgesia, two robust signs of neuropathic pain associated with experimental nerve injury, have been hypothesized to be mechanistically distinguished based on (a) fiber types which may be involved in the afferent input, (b) participation of spinal and supraspinal circuitry in these responses, and (c) sensitivity of these endpoints to pharmacological agents. Here, the possibility that nerve-injury induced tactile allodynia and thermal hyperalgesia may be mediated via different afferent fiber input was tested by evaluating these responses in sham-operated or nerve-injured (L 5 /L 6 ) rats before or after a single systemic injection of resiniferatoxin (RTX), an ultrapotent analogue of the C-fiber specific neurotoxin, capsaicin. Tactile allodynia, and three measures of thermal nociception, tail-flick, paw-flick and hot-plate responses, were determined before and at various intervals for at least 40 days after RTX injection. Nerveinjured, but not sham-operated, rats showed a long-lasting tactile allodynia and thermal hyperalgesia (paw-flick) within 2-3 days after surgery; responses to other noxious thermal stimuli (i.e., tail-flick and hot-plate tests) did not distinguish the two groups at the stimulus intensities employed. RTX treatment resulted in a significant and long-lasting (i.e. essentially irreversible) decrease in sensitivity to thermal noxious stimuli in both sham-operated and nerve-injured rats; thermal hyperalgesia was abolished and antinociception produced by RTX. In contrast, RTX treatment did not affect the tactile allodynia seen in the same nerve-injured rats. These data support the concept that thermal hyperalgesia seen after nerve ligation, as well as noxious thermal stimuli, are likely to be mediated by capsaicin-sensitive C-fiber afferents. In contrast, nerve-injury related tactile allodynia is insensitive to RTX treatment which clearly desensitizes C-fibers and, therefore such responses are not likely to be mediated through C-fiber afferents. The hypothesis that tactile allodynia may be due to inputs from large (i.e. Ab) afferents offers a mechanistic basis for the observed insensitivity of this endpoint to intrathecal morphine in this nerve-injury model. Further, these data suggest that clinical treatment of neuropathic pains with C-fiber specific agents such as capsaicin are unlikely to offer significant therapeutic benefit against mechanical allodynia. © 1999 International Association for the Study of Pain. Published by Elsevier Science B.V.
Many clinical case reports have suggested that sustained opioid exposure can elicit unexpected, p... more Many clinical case reports have suggested that sustained opioid exposure can elicit unexpected, paradoxical pain. Here, we explore the possibility that (1) opioid-induced pain results from tonic activation of descending pain facilitation arising in the rostral ventromedial medulla (RVM) and the presence of such pain manifests behaviorally as antinociceptive tolerance. Rats implanted subcutaneously with pellets or osmotic minipumps delivering morphine displayed time-related tactile allodynia and thermal hyperalgesia (i.e., opioid-induced "pain"); placebo pellets or saline minipumps did not change thresholds. Opioid-induced pain was observed while morphine delivery continued and while the rats were not in withdrawal. RVM lidocaine, or bilateral lesions of the dorsolateral funiculus (DLF), did not change response thresholds in placebo-pelleted rats but blocked opioid-induced pain. The intrathecal morphine antinociceptive dose-response curve (DRC) in morphinepelleted rats was displaced to the right of that in placebopelleted rats, indicating antinociceptive "tolerance." RVM lido-caine or bilateral DLF lesion did not alter the intrathecal morphine DRC in placebo-pelleted rats but blocked the rightward displacement seen in morphine-pelleted animals. The subcutaneous morphine antinociceptive DRC in morphinepelleted rats was displaced to the right of that in placebopelleted rats; this right shift was blocked by RVM lidocaine. The data show that (1) opioids elicit pain through tonic activation of bulbospinal facilitation from the RVM, (2) increased pain decreases spinal opioid antinociceptive potency, and (3) blockade of pain restores antinociceptive potency, revealing no change in antinociceptive signal transduction. These studies offer a mechanism for paradoxical opioid-induced pain and allow the development of approaches by which the loss of analgesic activity of opioids might be inhibited.
Trends in Neurosciences, 2002
Annals of The New York Academy of Sciences, 2006
Abstract: Neuropathic pain is associated with abnormal tactile and thermal responses that may be ... more Abstract: Neuropathic pain is associated with abnormal tactile and thermal responses that may be extraterritorial to the injured nerve. Importantly, tactile allodynia and thermal hyperalgesia may involve separate pathways, since complete and partial spinal cord lesions have blocked allodynia, but not hyperalgesia, after spinal nerve ligation (SNL). Furthermore, lesions of the dorsal column, and lidocaine microinjected into dorsal column nuclei block only tactile allodynia. Conversely, thermal hyperalgesia, but not tactile allodynia was blocked by desensitizatin of C-fibers with resiniferotoxin. Therefore, it seems that tactile allodynia is likely to be mediated by large diameter Aβ fibers, and not susceptible to modulation by spinal opioids, whereas hyperalgesia is mediated by unmyelinated C-fibers, and is sensitive to blockade by spinal opioids. Additionally, abnormal, spontaneous afferent drive in neuropathic pain may contribute to NMDA-mediated central sensitization by glutamate and by non-opioid actions of spinal dynorphin. Correspondingly, SNL elicited elevation in spinal dynorphin content in spinal segments at and adjacent to the zone of entry of the injured nerve along with signs of neuropathic pain. Antiserum to dynorphin A(1–17) or MK-801 given spinally blocked thermal hyperalgesia, but not tactile allodynia, after SNL, and also restored diminished morphine antinociception. Finally, afferent drive may induce descending facilitation from the rostroventromedial medulla (RVM). Blocking afferent drive with bupivicaine also restored lost potency of PAG morphine, as did CCK antagonists in the RVM. This observation is consistent with afferent drive activating descending facilitation from the RVM, and thus diminishing opioid activity, and may underlie the clinical observation of limited responsiveness of neuropathic pain to opioids
Pain, 1997
Nerve ligation injury in rats results in reduced nociceptive and non-nociceptive thresholds, simi... more Nerve ligation injury in rats results in reduced nociceptive and non-nociceptive thresholds, similar to some aspects of clinical conditions of neuropathic pain. Since underlying mechanisms of hyperalgesia and allodynia may differ, the present study investigated the pharmacology of morphine and MK-801 in rats subjected to a tight ligation of the L5 and L6 nerve roots or to a sham-operation procedure. Response to acute nociception was measured by (a) withdrawal of a hindpaw from a radiant heat source, (b) withdrawal of the tail from a radiant heat source or (c) the latency to a rapid flick of the tail following immersion in water at different noxious temperatures. Mechanical thresholds were determined by measuring response threshold to probing the hindpaw with von Frey filaments. Nerve ligation produced a significant, stable and long-lasting decrease in threshold to mechanical stimulation (i.e., tactile allodynia) when compared to sham-operated controls. Standardization of the diameter of the filaments (to that of the largest filament) did not alter the response threshold in nerve-injured animals. Nerve ligation produced decreased response latency of the ipsilateral paw (i.e., hyperalgesia) when compared to that of sham-operated rats. Tail-flick latencies to thermal stimuli induced by water at constant temperatures (48°, 52°or 55°C) or by radiant heat were not significantly different between nerve-injured and sham-operated groups. At doses which were not behaviorally toxic, MK-801 had no effect on tactile allodynia. At these doses, MK-801 blocked decreased paw withdrawal latency to radiant heat in nerve-injured rats, but did not significantly elevate the response threshold of sham-operated rats. Systemic (i.p.) or intracerebroventricular (i.c.v.) doses of morphine previously shown to be antiallodynic in nerve-ligated rats did not affect the response to probing with von Frey filaments in sham-operated controls. Intrathecal (i.t.) morphine did not change paw withdrawal thresholds elicited by von Frey filaments of either nerve-ligated rats (as previously reported) or of sham-operated rats at doses maximally effective against thermal stimuli applied to the tail or foot. Spinal morphine produced dosedependent antinociception in both nerve-injured and sham-operated groups in the foot-flick test but was less potent in the nerve-injured group. Presuppression of hyperalgesia of the foot with i.t. MK-801 in nerve-injured animals did not alter the potency of i.t. morphine. I.t. morphine was also active in the tail-flick tests with decreased potency in nerve-injured animals and, at some stimulus intensities, with a decreased efficacy as well. These data emphasize the distinction between the inactivity of morphine to suppress mechanical withdrawal thresholds (as elicited by von Frey filaments) and the activity of this compound to block the response to an acute thermal nociceptive stimulus in sham-operated or nerve-injured rats. It appears that nerve ligation injury produces a thermal allodynia/hyperalgesia which is likely dependent upon opioid-sensitive small-diameter primary afferent fibers and a mechanical allodynia which may be largely independent of small-fiber input. © 1997 International Association for the Study of Pain. Published by Elsevier Science B.V.
Neuroscience Letters, 1998
Spinal nerve ligation produces signs of neuropathic pain in rats. Different neuronal pathways may... more Spinal nerve ligation produces signs of neuropathic pain in rats. Different neuronal pathways may underlie the abnormal sensory responses to thermal and tactile stimuli. Here, the possibility that local circuitry in the spinal cord and/or spinalsupraspinal loops might be involved in tactile allodynia and thermal hyperalgesia of the hindpaws was investigated by transecting the spinal cord of sham-operated or L 5 /L 6 nerve ligated rats. Spinal transection completely abolished tactile allodynia in ligated rats. Thermal nocifensive responses were present after transection in ligated and sham-operated rats. Thermal hyperalgesia of the hindpaws was not evident in spinal transected, ligated rats. Tail-withdrawal responses to tactile probing were very robust after spinal transection in both groups, demonstrating loss of descending inhibition. These observations suggest that thermal hyperalgesia of the paw seen after nerve injury involves both spinal and supraspinal circuits, while tactile allodynia depends on a supraspinal loop. This difference may reflect afferent inputs associated with different fiber types.
Uploads
Papers by Michael Ossipov