We present a discussion on different types of sensors used in food biomarker detection and highli... more We present a discussion on different types of sensors used in food biomarker detection and highlight recent studies on nanozyme-based sensors to detect markers like toxins, pathogens, antibiotics, growth hormones, metal ions, additives, small molecules, drug residues.
Graphene is a one-atom-thick carbon compound, which holds promises for detecting cancer biomarker... more Graphene is a one-atom-thick carbon compound, which holds promises for detecting cancer biomarkers along with its derivatives. The atom-wide graphene layer is ideal for cancer biomarker detection due to its unique physicochemical properties like increased electrical and thermal conductivity, optical transparency, and enhanced chemical and mechanical strength. The scientific aim of any biosensor is to create a smaller and portable point of care device for easy and early cancer detection; graphene is able to live up to that. Apart from tumour detection, graphene-based biosensors can diagnose many diseases, their biomarkers, and pathogens. Many existing remarkable pieces of research have proven the candidacy of nanoparticles in most cancer biomarkers detection. This article discusses the effectiveness of graphene-based biosensors in different cancer biomarker detection. This article provides a detailed review of graphene and its derivatives that can be used to detect cancer biomarkers with high specificity, sensitivity, and selectivity. We have highlighted the synthesis procedures of graphene and its products and also discussed their significant properties. Furthermore, we provided a detailed overview of the recent studies on cancer biomarker detection using graphene-based biosensors. The different paths to create and modify graphene surfaces for sensory applications have also been highlighted in each section. Finally, we concluded the review by discussing the existing challenges of these biosensors and also highlighted the steps that can be taken to overcome them.
Recent developments of point-of-care (POC) diagnostic devices available for detecting pathogens t... more Recent developments of point-of-care (POC) diagnostic devices available for detecting pathogens to monitor infectious diseases that have made a massive impact in modern health care systems.
Purpose Among all forms of cancers, hepatocellular carcinoma (HCC) is the fifth most common cance... more Purpose Among all forms of cancers, hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. There are several treatment options for HCC ranging from loco-regional therapy to surgical treatment. Yet, there is high morbidity and mortality. Recent research focus has shifted towards more effective and less toxic cancer treatment options. Curcumin, the active ingredient in the Curcuma longa plant, has gained widespread attention in recent years because of its multifunctional properties as an antioxidant, anti-inflammatory, antimicrobial, and anticancer agent. Methods A systematic search of PubMed, Embase and Google Scholar was performed for studies reporting incidence of HCC, risk factors associated with cirrhosis and experimental use of curcumin as an anti-cancer agent. Results This review exclusively encompasses the anti-cancer properties of curcumin in HCC globally and it’s postulated molecular targets of curcumin when used against liver cancers. Conclusions This rev...
With the threat of increasing SARS-CoV-2 cases looming in front of us and no effective and safest... more With the threat of increasing SARS-CoV-2 cases looming in front of us and no effective and safest vaccine available to curb this pandemic disease due to its sprouting variants, many countries have undergone a lockdown 2.0 or planning a lockdown 3.0. This has upstretched an unprecedented demand to develop rapid, sensitive, and highly selective diagnostic devices that can quickly detect coronavirus (COVID-19). Traditional techniques like polymerase chain reaction have proven to be time-inefficient, expensive, labor intensive, and impracticable in remote settings. This shifts the attention to alternative biosensing devices that can be successfully used to sense the COVID-19 infection and curb the spread of coronavirus cases. Among these, nanomaterial-based biosensors hold immense potential for rapid coronavirus detection because of their noninvasive and susceptible, as well as selective properties that have the potential to give real-time results at an economical cost. These diagnostic devices can be used for mass COVID-19 detection to understand the rapid progression of the infection and give better-suited therapies. This review provides an overview of existing and potential nanomaterial-based biosensors that can be used for rapid SARS-CoV-2 diagnostics. Novel biosensors employing different detection mechanisms are also highlighted in different sections of this review. Practical tools and techniques required to develop such biosensors to make them reliable and portable have also been discussed in the article. Finally, the review is concluded by presenting the current challenges and future perspectives of nanomaterial-based biosensors in SARS-CoV-2 diagnostics.
: In this review, we summarised the different methods for copper nanoparticle synthesis, includin... more : In this review, we summarised the different methods for copper nanoparticle synthesis, including green methods. We highlighted that the synthesis of the copper nanoparticles from green sources is preferable as they serve as stable and reducing entities. Furthermore, we critically reviewed the effectiveness of copper- based nanoparticles in oncogenic treatments emphasizing breast, lung, colorectal, and skin cancers. Finally, we have summarised the recent progress made in copper-based nanoparticles and their applications to amplify and rectify present cancer treatment options. The synthesis, characterization, stabilization, and functionalization techniques of various copper-based nanoparticles have also been highlighted in each section. In conclusion, the review provides the outlook of copper nanoparticles in cancer diagnostics and therapeutics.
Consumption of fossil fuels, especially in transport and energy-dependent sectors, has led to lar... more Consumption of fossil fuels, especially in transport and energy-dependent sectors, has led to large greenhouse gas production. Hydrogen is an exciting energy source that can serve our energy purposes and decrease toxic waste production. Decomposition of methane yields hydrogen devoid of COx components, thereby aiding as an eco-friendly approach towards large-scale hydrogen production. This review article is focused on hydrogen production through thermocatalytic methane decomposition (TMD) for hydrogen production. The thermodynamics of this approach has been highlighted. Various methods of hydrogen production from fossil fuels and renewable resources were discussed. Methods including steam methane reforming, partial oxidation of methane, auto thermal reforming, direct biomass gasification, thermal water splitting, methane pyrolysis, aqueous reforming, and coal gasification have been reported in this article. A detailed overview of the different types of catalysts available, the reaso...
Contagious diseases are the principal cause of mortality, particularly respiratory viruses, a rea... more Contagious diseases are the principal cause of mortality, particularly respiratory viruses, a real menace for public health and economic development worldwide. Therefore, timely diagnosis and treatments are the only life-saving strategy to overcome any epidemic and particularly the ongoing prevailing pandemic COVID-19 caused by SARS-CoV-2. A rapid identification, point of care, portable, highly sensitive, stable, and inexpensive device is needed which is exceptionally satisfied by sensor technology. Consequently, the researchers have directed their attention to employing sensors targeting multiple analyses of pathogenic detections across the world. Nanostructured materials (nanoparticles, nanowires, nanobundles, etc.), owing to their unique characteristics such as large surface-to-volume ratio and nanoscale interactions, are widely employed to fabricate facile sensors to meet all the immediate emerging challenges and threats. This review is anticipated to foster researchers in developing advanced nanomaterials-based sensors for the increasing number of COVID-19 cases across the globe. The mechanism of respiratory viral detection by nanomaterials-based sensors has been reported. Moreover, the advantages, disadvantages, and their comparison with conventional sensors are summarized. Furthermore, we have highlighted the challenges and future potential of these sensors for achieving efficient and rapid detection. Index Terms-Nanomaterials, respiratory viral detection, SARS-CoV-2, types of sensors. I. INTRODUCTION V IRUSES are a severe threat to living things on earth, so timely detection for clinical point-of-care purposes [1] is significant in saving someone's life, as a slight delay can be very detrimental. The respiratory mucosa is the most suscep
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
There is an undeniable growing number of diabetes cases worldwide that have received widespread g... more There is an undeniable growing number of diabetes cases worldwide that have received widespread global attention by many pharmaceutical and clinical industries to develop better functioning glucose sensing devices. This has called for an unprecedented demand to develop highly efficient, stable, selective, and sensitive non-enzymatic glucose sensors (NEGS). Interestingly, many novel materials have shown the promising potential of directly detecting glucose in the blood and fluids. This review exclusively encompasses the electrochemical detection of glucose and its mechanism based on various metal-based materials such as cobalt (Co), nickel (Ni), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), titanium (Ti), iridium (Ir), and rhodium (Rh). Multiple aspects of these metals and their oxides were explored vis-à-vis their performance in glucose detection. The direct glucose oxidation via metallic redox centres is explained by the chemisorption model and the incipient hydrous oxide/adat...
The remarkable significance of electrode materials in industrial processes, energy, sustainabilit... more The remarkable significance of electrode materials in industrial processes, energy, sustainability and diabetes monitoring has captivated scientists to develop advance nanomaterials for the benefit of life across the globe. Here in, the recent developments in nanostructured porous metal and metal oxide composite materials for supercapacitor applications and non-enzymatic glucose sensors (NEGS) has been extensively discussed. The essential and active electrode materials from the research and application perspective has been emphasized in detail. We have also evaluated the worthiness, taxonomical classification, efficiency, specific capacitance and sensitivity of these materials for the aforementioned potential applications. Eventually, we concluded the review
More than five decades have been invested in understanding glucose biosensors. Yet, this immensel... more More than five decades have been invested in understanding glucose biosensors. Yet, this immensely versatile field has continued to gain attention from the scientific world to better understand and diagnose diabetes. However, such extensive work done to improve glucose sensing devices has still not yielded desirable results. Drawbacks like the necessity of the invasive finger pricking step and the lack of optimization of diagnostic interventions still need to be considered to improve the testing process of diabetic patients. To upgrade the glucose-sensing devices and reduce the number of intermediary steps during glucose measurement, fourth-generation glucose sensors (FGGS) have been introduced. These sensors, made using robust electrocatalytic copper nanostructures, improve diagnostic efficiency and costeffectiveness. This review aims to present the essential scientific progress in copper nanostructure-based FGGS in the past ten years (2010-present). After a short introduction, we presented the working principles of these sensors. We then highlighted the importance of copper nanostructures as advanced electrode materials to develop reliable real-time FGGS. Finally, we cover the advantages, shortcomings, and prospects for developing highly sensitive, stable, and specific FGGS.
Background: Heavy metals and metalloids like arsenic, cadmium, mercury acts as denaturing agent f... more Background: Heavy metals and metalloids like arsenic, cadmium, mercury acts as denaturing agent for biomolecules. They interfere with protein’s physiological activity by forming a complex with the protein’s side chain or removing the essential metal ions from metalloproteins and replacing them. Protein aggregation is an extensive phenomenon in a cell and is linked with various pathological conditions. Aim: In this study, we aim to prove that proteins are highly susceptible to arsenite toxicity by arsenite-induced protein aggregation; and that naringin reduces the aggregation effect. Methods: Several biophysical techniques were employed to study the protein aggregation due to arsenite and its prevention by naringin. Results: Through our experiments, the results showed that aggregation induced by arsenite was reduced in the presence of naringin at twice the concentration of arsenite. Conclusion: In conclusion, our study showed that naringin plays a protective role during HSA aggregati...
We present a discussion on different types of sensors used in food biomarker detection and highli... more We present a discussion on different types of sensors used in food biomarker detection and highlight recent studies on nanozyme-based sensors to detect markers like toxins, pathogens, antibiotics, growth hormones, metal ions, additives, small molecules, drug residues.
Graphene is a one-atom-thick carbon compound, which holds promises for detecting cancer biomarker... more Graphene is a one-atom-thick carbon compound, which holds promises for detecting cancer biomarkers along with its derivatives. The atom-wide graphene layer is ideal for cancer biomarker detection due to its unique physicochemical properties like increased electrical and thermal conductivity, optical transparency, and enhanced chemical and mechanical strength. The scientific aim of any biosensor is to create a smaller and portable point of care device for easy and early cancer detection; graphene is able to live up to that. Apart from tumour detection, graphene-based biosensors can diagnose many diseases, their biomarkers, and pathogens. Many existing remarkable pieces of research have proven the candidacy of nanoparticles in most cancer biomarkers detection. This article discusses the effectiveness of graphene-based biosensors in different cancer biomarker detection. This article provides a detailed review of graphene and its derivatives that can be used to detect cancer biomarkers with high specificity, sensitivity, and selectivity. We have highlighted the synthesis procedures of graphene and its products and also discussed their significant properties. Furthermore, we provided a detailed overview of the recent studies on cancer biomarker detection using graphene-based biosensors. The different paths to create and modify graphene surfaces for sensory applications have also been highlighted in each section. Finally, we concluded the review by discussing the existing challenges of these biosensors and also highlighted the steps that can be taken to overcome them.
Recent developments of point-of-care (POC) diagnostic devices available for detecting pathogens t... more Recent developments of point-of-care (POC) diagnostic devices available for detecting pathogens to monitor infectious diseases that have made a massive impact in modern health care systems.
Purpose Among all forms of cancers, hepatocellular carcinoma (HCC) is the fifth most common cance... more Purpose Among all forms of cancers, hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. There are several treatment options for HCC ranging from loco-regional therapy to surgical treatment. Yet, there is high morbidity and mortality. Recent research focus has shifted towards more effective and less toxic cancer treatment options. Curcumin, the active ingredient in the Curcuma longa plant, has gained widespread attention in recent years because of its multifunctional properties as an antioxidant, anti-inflammatory, antimicrobial, and anticancer agent. Methods A systematic search of PubMed, Embase and Google Scholar was performed for studies reporting incidence of HCC, risk factors associated with cirrhosis and experimental use of curcumin as an anti-cancer agent. Results This review exclusively encompasses the anti-cancer properties of curcumin in HCC globally and it’s postulated molecular targets of curcumin when used against liver cancers. Conclusions This rev...
With the threat of increasing SARS-CoV-2 cases looming in front of us and no effective and safest... more With the threat of increasing SARS-CoV-2 cases looming in front of us and no effective and safest vaccine available to curb this pandemic disease due to its sprouting variants, many countries have undergone a lockdown 2.0 or planning a lockdown 3.0. This has upstretched an unprecedented demand to develop rapid, sensitive, and highly selective diagnostic devices that can quickly detect coronavirus (COVID-19). Traditional techniques like polymerase chain reaction have proven to be time-inefficient, expensive, labor intensive, and impracticable in remote settings. This shifts the attention to alternative biosensing devices that can be successfully used to sense the COVID-19 infection and curb the spread of coronavirus cases. Among these, nanomaterial-based biosensors hold immense potential for rapid coronavirus detection because of their noninvasive and susceptible, as well as selective properties that have the potential to give real-time results at an economical cost. These diagnostic devices can be used for mass COVID-19 detection to understand the rapid progression of the infection and give better-suited therapies. This review provides an overview of existing and potential nanomaterial-based biosensors that can be used for rapid SARS-CoV-2 diagnostics. Novel biosensors employing different detection mechanisms are also highlighted in different sections of this review. Practical tools and techniques required to develop such biosensors to make them reliable and portable have also been discussed in the article. Finally, the review is concluded by presenting the current challenges and future perspectives of nanomaterial-based biosensors in SARS-CoV-2 diagnostics.
: In this review, we summarised the different methods for copper nanoparticle synthesis, includin... more : In this review, we summarised the different methods for copper nanoparticle synthesis, including green methods. We highlighted that the synthesis of the copper nanoparticles from green sources is preferable as they serve as stable and reducing entities. Furthermore, we critically reviewed the effectiveness of copper- based nanoparticles in oncogenic treatments emphasizing breast, lung, colorectal, and skin cancers. Finally, we have summarised the recent progress made in copper-based nanoparticles and their applications to amplify and rectify present cancer treatment options. The synthesis, characterization, stabilization, and functionalization techniques of various copper-based nanoparticles have also been highlighted in each section. In conclusion, the review provides the outlook of copper nanoparticles in cancer diagnostics and therapeutics.
Consumption of fossil fuels, especially in transport and energy-dependent sectors, has led to lar... more Consumption of fossil fuels, especially in transport and energy-dependent sectors, has led to large greenhouse gas production. Hydrogen is an exciting energy source that can serve our energy purposes and decrease toxic waste production. Decomposition of methane yields hydrogen devoid of COx components, thereby aiding as an eco-friendly approach towards large-scale hydrogen production. This review article is focused on hydrogen production through thermocatalytic methane decomposition (TMD) for hydrogen production. The thermodynamics of this approach has been highlighted. Various methods of hydrogen production from fossil fuels and renewable resources were discussed. Methods including steam methane reforming, partial oxidation of methane, auto thermal reforming, direct biomass gasification, thermal water splitting, methane pyrolysis, aqueous reforming, and coal gasification have been reported in this article. A detailed overview of the different types of catalysts available, the reaso...
Contagious diseases are the principal cause of mortality, particularly respiratory viruses, a rea... more Contagious diseases are the principal cause of mortality, particularly respiratory viruses, a real menace for public health and economic development worldwide. Therefore, timely diagnosis and treatments are the only life-saving strategy to overcome any epidemic and particularly the ongoing prevailing pandemic COVID-19 caused by SARS-CoV-2. A rapid identification, point of care, portable, highly sensitive, stable, and inexpensive device is needed which is exceptionally satisfied by sensor technology. Consequently, the researchers have directed their attention to employing sensors targeting multiple analyses of pathogenic detections across the world. Nanostructured materials (nanoparticles, nanowires, nanobundles, etc.), owing to their unique characteristics such as large surface-to-volume ratio and nanoscale interactions, are widely employed to fabricate facile sensors to meet all the immediate emerging challenges and threats. This review is anticipated to foster researchers in developing advanced nanomaterials-based sensors for the increasing number of COVID-19 cases across the globe. The mechanism of respiratory viral detection by nanomaterials-based sensors has been reported. Moreover, the advantages, disadvantages, and their comparison with conventional sensors are summarized. Furthermore, we have highlighted the challenges and future potential of these sensors for achieving efficient and rapid detection. Index Terms-Nanomaterials, respiratory viral detection, SARS-CoV-2, types of sensors. I. INTRODUCTION V IRUSES are a severe threat to living things on earth, so timely detection for clinical point-of-care purposes [1] is significant in saving someone's life, as a slight delay can be very detrimental. The respiratory mucosa is the most suscep
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
There is an undeniable growing number of diabetes cases worldwide that have received widespread g... more There is an undeniable growing number of diabetes cases worldwide that have received widespread global attention by many pharmaceutical and clinical industries to develop better functioning glucose sensing devices. This has called for an unprecedented demand to develop highly efficient, stable, selective, and sensitive non-enzymatic glucose sensors (NEGS). Interestingly, many novel materials have shown the promising potential of directly detecting glucose in the blood and fluids. This review exclusively encompasses the electrochemical detection of glucose and its mechanism based on various metal-based materials such as cobalt (Co), nickel (Ni), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), titanium (Ti), iridium (Ir), and rhodium (Rh). Multiple aspects of these metals and their oxides were explored vis-à-vis their performance in glucose detection. The direct glucose oxidation via metallic redox centres is explained by the chemisorption model and the incipient hydrous oxide/adat...
The remarkable significance of electrode materials in industrial processes, energy, sustainabilit... more The remarkable significance of electrode materials in industrial processes, energy, sustainability and diabetes monitoring has captivated scientists to develop advance nanomaterials for the benefit of life across the globe. Here in, the recent developments in nanostructured porous metal and metal oxide composite materials for supercapacitor applications and non-enzymatic glucose sensors (NEGS) has been extensively discussed. The essential and active electrode materials from the research and application perspective has been emphasized in detail. We have also evaluated the worthiness, taxonomical classification, efficiency, specific capacitance and sensitivity of these materials for the aforementioned potential applications. Eventually, we concluded the review
More than five decades have been invested in understanding glucose biosensors. Yet, this immensel... more More than five decades have been invested in understanding glucose biosensors. Yet, this immensely versatile field has continued to gain attention from the scientific world to better understand and diagnose diabetes. However, such extensive work done to improve glucose sensing devices has still not yielded desirable results. Drawbacks like the necessity of the invasive finger pricking step and the lack of optimization of diagnostic interventions still need to be considered to improve the testing process of diabetic patients. To upgrade the glucose-sensing devices and reduce the number of intermediary steps during glucose measurement, fourth-generation glucose sensors (FGGS) have been introduced. These sensors, made using robust electrocatalytic copper nanostructures, improve diagnostic efficiency and costeffectiveness. This review aims to present the essential scientific progress in copper nanostructure-based FGGS in the past ten years (2010-present). After a short introduction, we presented the working principles of these sensors. We then highlighted the importance of copper nanostructures as advanced electrode materials to develop reliable real-time FGGS. Finally, we cover the advantages, shortcomings, and prospects for developing highly sensitive, stable, and specific FGGS.
Background: Heavy metals and metalloids like arsenic, cadmium, mercury acts as denaturing agent f... more Background: Heavy metals and metalloids like arsenic, cadmium, mercury acts as denaturing agent for biomolecules. They interfere with protein’s physiological activity by forming a complex with the protein’s side chain or removing the essential metal ions from metalloproteins and replacing them. Protein aggregation is an extensive phenomenon in a cell and is linked with various pathological conditions. Aim: In this study, we aim to prove that proteins are highly susceptible to arsenite toxicity by arsenite-induced protein aggregation; and that naringin reduces the aggregation effect. Methods: Several biophysical techniques were employed to study the protein aggregation due to arsenite and its prevention by naringin. Results: Through our experiments, the results showed that aggregation induced by arsenite was reduced in the presence of naringin at twice the concentration of arsenite. Conclusion: In conclusion, our study showed that naringin plays a protective role during HSA aggregati...
Uploads
Papers by Fareeha Arshad