Papers by Shalome Bassett
New Phytologist, 2007
• The relationship between cool-season grasses and fungal endophytes is widely regarded as mutual... more • The relationship between cool-season grasses and fungal endophytes is widely regarded as mutualistic, but there is growing uncertainty about whether changes in resource supply and environment benefit both organisms to a similar extent.• Here, we infected two perennial ryegrass (Lolium perenne) cultivars (AberDove, Fennema) that differ in carbohydrate content with three strains of Neotyphodium lolii (AR1, AR37, common strain) that differ intrinsically in alkaloid profile. We grew endophyte-free and infected plants under high and low nitrogen (N) supply and used quantitative PCR (qPCR) to estimate endophyte concentrations in harvested leaf tissues.• Endophyte concentration was reduced by 40% under high N supply, and by 50% in the higher sugar cultivar. These two effects were additive (together resulting in 75% reduction). Alkaloid production was also reduced under both increased N supply and high sugar cultivar, and for three of the four alkaloids quantified, concentrations were linearly related to endophyte concentration.• The results stress the need for wider quantification of fungal endophytes in the grassland–foliar endophyte context, and have implications for how introducing new cultivars, novel endophytes or increasing N inputs affect the role of endophytes in grassland ecosystems.The relationship between cool-season grasses and fungal endophytes is widely regarded as mutualistic, but there is growing uncertainty about whether changes in resource supply and environment benefit both organisms to a similar extent.Here, we infected two perennial ryegrass (Lolium perenne) cultivars (AberDove, Fennema) that differ in carbohydrate content with three strains of Neotyphodium lolii (AR1, AR37, common strain) that differ intrinsically in alkaloid profile. We grew endophyte-free and infected plants under high and low nitrogen (N) supply and used quantitative PCR (qPCR) to estimate endophyte concentrations in harvested leaf tissues.Endophyte concentration was reduced by 40% under high N supply, and by 50% in the higher sugar cultivar. These two effects were additive (together resulting in 75% reduction). Alkaloid production was also reduced under both increased N supply and high sugar cultivar, and for three of the four alkaloids quantified, concentrations were linearly related to endophyte concentration.The results stress the need for wider quantification of fungal endophytes in the grassland–foliar endophyte context, and have implications for how introducing new cultivars, novel endophytes or increasing N inputs affect the role of endophytes in grassland ecosystems.
Mutation Research-fundamental and Molecular Mechanisms of Mutagenesis, 2010
Epigenomic regulation, via DNA methylation, histone modification and non-coding RNA, is increasin... more Epigenomic regulation, via DNA methylation, histone modification and non-coding RNA, is increasingly recognised as having a key role in normal development and function of an organism, acting to control cellular and tissue growth and differentiation. It is also thought to be involved in many complex diseases now common in the Western world, including cardiovascular disease, type 2 diabetes, obesity and inflammatory bowel disease (IBD). There is a range of evidence to suggest that nutrition plays a vital role in the protection from such diseases. However, there is little information about the role of nutrition on the epigenetic regulation of IBD. This review aims to elucidate the interactions of nutrients and the epigenome in IBD. More specifically, the plasticity of epigenetic modifications that occur due to low selenium and folate levels in the diet during gestation and lactation will be discussed. A better understanding of this plasticity, and of nutrient-epigenome interactions, will have important implications for enhancing human health through foods.
Australasian Plant Pathology, 2010
Endophytes of the Neotyphodium/Epichloë complex are filamentous fungi that typically form mutuali... more Endophytes of the Neotyphodium/Epichloë complex are filamentous fungi that typically form mutualistic associations with temperate grasses. The endophytes systemically colonise the intercellular spaces of their grass hosts and confer several biotic and abiotic attributes, but can also cause mammalian toxicoses. These symbioses are therefore of significant agricultural importance, and furthermore, the symbioses represent models to understand how such symbioses are established and maintained. To gain a greater understanding of the Neotyphodium lolii-perennial ryegrass (Lolium perenne) symbiosis, we have generated, sequenced and analysed four in planta expressed sequence tag libraries, enriched for genes differentially expressed during symbiosis via suppression subtractive hybridisation. Subtracted libraries were largely comprised of perennial ryegrass sequences, and comparative functional profiling of endophyte-infected ryegrass libraries with endophyte-free ryegrass libraries revealed downregulation of carbohydrate metabolism and photosynthesis during symbiosis, the latter confirming observations made in previous studies. Functional categories up regulated in the plant host in association with endophyte infection included cellular protein transport and protein synthesis and turn over.We also identified 24 N. lolii transcripts expressed during symbiosis, some of which were homologous to demonstrated pathogenicity/virulence genes, and others with proven roles in endophyte secondary metabolism. This study offers insights into biological processes underlying the N. lolii-perennial ryegrass symbiosis, and provides a list of novel candidate genes from both symbionts, which will form the basis for future investigations.
Australasian Plant Pathology, 2010
Journal of Bacteriology, 2005
Infection and Immunity, 2005
Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex, has a particularly wide ... more Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex, has a particularly wide host range and causes tuberculosis in most mammals, including humans. A signature tag mutagenesis approach, which employed illegitimate recombination and infection of guinea pigs, was applied to M. bovis to discover genes important for virulence and to find potential vaccine candidates. Fifteen attenuated mutants were identified, four of which produced no lesions when inoculated separately into guinea pigs. One of these four mutants had nine deleted genes including mmpL4 and sigK and, in guinea pigs with aerosol challenge, provided protection against tuberculosis at least equal to that of M. bovis BCG. Seven mutants had mutations near the esxA (esat-6) locus, and immunoblot analysis of these confirmed the essential role of other genes at this locus in the secretion of EsxA (ESAT-6) and EsxB (CFP10). Mutations in the eight other attenuated mutants were widely spread through the chromosome and included pks1, which is naturally inactivated in clinical strains of M. tuberculosis. Many genes identified were different from those found by signature tag mutagenesis of M. tuberculosis by use of a mouse infection model and illustrate how the use of different approaches enables identification of a wider range of attenuating mutants.
Uploads
Papers by Shalome Bassett