Papers by Bethan Davies
Journal of Glaciology, 2012
Journal of Glaciology, 2011
Quaternary Science Reviews, 2012
The Antarctic Peninsula region is currently undergoing rapid environmental change, resulting in t... more The Antarctic Peninsula region is currently undergoing rapid environmental change, resulting in the thinning, acceleration and recession of glaciers and the sequential collapse of ice shelves. It is important to view these changes in the context of long-term palaeoenvironmental complexity and to understand the key processes controlling ice sheet growth and recession. In addition, numerical ice sheet models require detailed geological data for tuning and testing. Therefore, this paper systematically and holistically reviews published geological evidence for Antarctic Peninsula Ice Sheet variability for each key locality throughout the Cenozoic, and brings together the prevailing consensus of the extent, character and behaviour of the glaciations of the Antarctic Peninsula region. Major contributions include a downloadable database of 186 terrestrial and marine calibrated dates; an original reconstruction of the LGM ice sheet; and a new series of isochrones detailing ice sheet retreat following the LGM.Glaciation of Antarctica was initiated around the Eocene/Oligocene transition in East Antarctica. Palaeogene records of Antarctic Peninsula glaciation are primarily restricted to King George Island, where glacigenic sediments provide a record of early East Antarctic glaciations, but with modification of far-travelled erratics by local South Shetland Island ice caps. Evidence for Neogene glaciation is derived primarily from King George Island and James Ross Island, where glaciovolcanic strata indicate that ice thicknesses reached 500–850 m during glacials. This suggests that the Antarctic Peninsula Ice Sheet draped, rather than drowned, the topography. Marine geophysical investigations indicate multiple ice sheet advances during this time. Seismic profiling of continental shelf-slope deposits indicates up to ten large advances of the Antarctic Peninsula Ice Sheet during the Early Pleistocene, when the ice sheet was dominated by 40 kyr cycles. Glacials became more pronounced, reaching the continental shelf edge, and of longer duration during the Middle Pleistocene. During the Late Pleistocene, repeated glacials reached the shelf edge, but ice shelves inhibited iceberg rafting. The Last Glacial Maximum (LGM) occurred at 18 ka BP, after which transitional glaciomarine sediments on the continental shelf indicate ice-sheet retreat. The continental shelf contains large bathymetric troughs, which were repeatedly occupied by large ice streams during Pleistocene glaciations. Retreat after the LGM was episodic in the Weddell Sea, with multiple readvances and changes in ice-flow direction, but rapid in the Bellingshausen Sea. The late Holocene Epoch was characterised by repeated fluctuations in palaeoenvironmental conditions, with associated glacial readvances. However, this has been subsumed by rapid warming and ice-shelf collapse during the twentieth century.► Critical review of the geological and geophysical evidence for Cenozoic glaciation of the Antarctic Peninsula. ► Collation of 186 terrestrial and marine dates in a downloadable database. ► Reconstructions of the Antarctic Peninsula Ice sheet and its retreat at the LGM.
Quaternary Science Reviews, 2012
At various times during the Quaternary, north-eastern England was a zone of confluence between dy... more At various times during the Quaternary, north-eastern England was a zone of confluence between dynamic ice lobes sourced from the Pennines, northern Scotland, the Cheviots, and Scandinavia. The region thus has some of the most complex exposures of Middle to Late Pleistocene sediments in Britain, with both interglacial and glacial sediments deposited in terrestrial and marine settings. We investigated sedimentary sequences exposed on the coastline of County Durham at Warren House Gill, and present a new model of British and Fennoscandian Ice Sheet interaction in the North Sea Basin during the Middle Pleistocene.The stratigraphy at Warren House Gill consists of a lower diamicton and upper estuarine sediments, both part of the Warren House Formation. They are separated from the overlying Weichselian Blackhall and Horden tills by a substantial unconformity. The lower diamicton of the Warren House Formation is re-interpreted here as an MIS 8 to 12 glaciomarine deposit containing ice-rafted lithics from north-eastern Scotland and the northeast North Sea, and is renamed the ‘Ash Gill Member’. It is dated by lithological comparison to the Easington Raised Beach, Middle Pleistocene Amino Acid Racemisation values, and indirectly by optically stimulated luminescence. The overlying shallow subaqueous sediments were deposited in an estuarine environment by suspension settling and bottom current activity. They are named the ‘Whitesides Member’, and form the uppermost member of the Warren House Formation. During glaciation, ice-rafted material was deposited in a marine embayment. There is no evidence of a grounded, onshore Scandinavian ice sheet in County Durham during MIS 6, which has long been held as the accepted stratigraphy. This has major implications for the currently accepted British Quaternary Stratigraphy. Combined with recent work on the Middle Pleistocene North Sea Drift from Norfolk, which is now suggested to have been deposited by a Scottish ice sheet, the presence of a Scandinavian ice sheet in eastern England at any time during the Quaternary is becoming increasingly doubtful.
The Cryosphere, 2012
The northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recessi... more The northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recession and acceleration. However, the dynamic response of land-terminating, ice-shelf tributary and tidewater glaciers has not yet been quantified or assessed for variability, and there are sparse data for glacier classification, morphology, area, length or altitude. This paper firstly classifies the area, length, altitude, slope, aspect, geomorphology, type and hypsometry of 194 glaciers on Trinity Peninsula, Vega Island and James Ross Island in 2009 AD. Secondly, this paper documents glacier change 1988-2009. In 2009, the glacierised area was 8140 ± 262 km 2 . From 1988From -2001From , 90 % of glaciers receded, and from 2001From -2009. This equates to an area change of −4.4 % for Trinity Peninsula eastern coast glaciers, −0.6 % for western coast glaciers, and −35.0 % for ice-
Boreas, 2012
This study reconstructs the depositional environments that accompanied both ice advance and ice r... more This study reconstructs the depositional environments that accompanied both ice advance and ice retreat of the last British–Irish Ice Sheet in NE England during the Last Glacial Maximum, and proposes three regional ice-flow phases. The Late Devensian (29–22 cal. ka BP) Tyne Gap Ice Stream initially deposited the Blackhall Till Formation during shelf-edge glaciation (Phase I). This subglacial traction till comprises several related facies, including stratified and laminated diamictons, tectonites, and sand and gravel beds deposited both in subglacial canals and in proglacial streams. Eventually, stagnation of the Tyne Gap Ice Stream led to ice-marginal sedimentation in County Durham (Phase II). During the Dimlington Stadial (21 cal. ka BP), the North Sea Lobe advanced towards the coastline of N Norfolk. This resulted initially in sandur deposition (widespread, tabular sand and gravel; the Peterlee Sand and Gravel Formation; Phase II) and ultimately in deposition of the Horden Till Formation (Phase III), a massive subglacial till. As the North Sea Lobe overrode previous formations, it thrusted and stacked sediments in County Durham, and dammed proglacial lakes between the east-coast ice, the Pennine uplands and the remaining Pennine ice. The North Sea Lobe retreated after Heinrich Event 1 (16 ka). This study highlights the complexity of ice flow during the Late Devensian glaciation of NE England, with changing environmental and oceanic conditions forcing a mobile and sensitive ice sheet.This study reconstructs the depositional environments that accompanied both ice advance and ice retreat of the last British–Irish Ice Sheet in NE England during the Last Glacial Maximum, and proposes three regional ice-flow phases. The Late Devensian (29–22 cal. ka BP) Tyne Gap Ice Stream initially deposited the Blackhall Till Formation during shelf-edge glaciation (Phase I). This subglacial traction till comprises several related facies, including stratified and laminated diamictons, tectonites, and sand and gravel beds deposited both in subglacial canals and in proglacial streams. Eventually, stagnation of the Tyne Gap Ice Stream led to ice-marginal sedimentation in County Durham (Phase II). During the Dimlington Stadial (21 cal. ka BP), the North Sea Lobe advanced towards the coastline of N Norfolk. This resulted initially in sandur deposition (widespread, tabular sand and gravel; the Peterlee Sand and Gravel Formation; Phase II) and ultimately in deposition of the Horden Till Formation (Phase III), a massive subglacial till. As the North Sea Lobe overrode previous formations, it thrusted and stacked sediments in County Durham, and dammed proglacial lakes between the east-coast ice, the Pennine uplands and the remaining Pennine ice. The North Sea Lobe retreated after Heinrich Event 1 (16 ka). This study highlights the complexity of ice flow during the Late Devensian glaciation of NE England, with changing environmental and oceanic conditions forcing a mobile and sensitive ice sheet.
Earth Science Reviews, 2012
The central sector of the last British–Irish Ice Sheet (BIIS) was characterised by considerable c... more The central sector of the last British–Irish Ice Sheet (BIIS) was characterised by considerable complexity, both in terms of its glacial stratigraphy and geomorphological signature. This complexity is reflected by the large number and long history of papers that have attempted to decipher the glaciodynamic history of the region. Despite significant advances in our understanding, reconstructions remain hotly debated and relatively local, thereby hindering attempts to piece together BIIS dynamics. This paper seeks to address these issues by reviewing geomorphological mapping evidence of palimpsest flow signatures and providing an up-to-date stratigraphy of the region. Reconciling geomorphological and sedimentological evidence with relative and absolute dating constraints has allowed us to develop a new six-stage glacial model of ice-flow history and behaviour in the central sector of the last BIIS, with three major phases of glacial advance. This includes: I. Eastwards ice flow through prominent topographic corridors of the north Pennines; II. Cessation of the Stainmore ice flow pathway and northwards migration of the North Irish Sea Basin ice divide; III. Stagnation and retreat of the Tyne Gap Ice Stream; IV. Blackhall Wood–Gosforth Oscillation; V. Deglaciation of the Solway Lowlands; and VI. Scottish Re-advance and subsequent final retreat of ice out of the central sector of the last BIIS. The ice sheet was characterised by considerable dynamism, with flow switches, initiation (and termination) of ice streams, draw-down of ice into marine ice streams, repeated ice-marginal fluctuations and the production of large volumes of meltwater, locally impounded to form ice-dammed glacial lakes. Significantly, we tie this reconstruction to work carried out and models developed for the entire ice sheet. This therefore situates research in the central sector within contemporary understanding of how the last BIIS evolved over time.
Quaternary Geochronology, 2013
Antarctic Palaeoenvironments and Earth Surface Processes, 2013
Journal of Glaciology, 2012
Proceedings of The Geologists Association, 2009
The Easington Raised Beach, in Shippersea Bay, County Durham, is the most northerly known intergl... more The Easington Raised Beach, in Shippersea Bay, County Durham, is the most northerly known interglacial beach deposit in England. It lies directly on Magnesian Limestone bedrock at 33 m O.D. and is covered by glacial sediments attributed to the Devensian. Detailed sedimentological analysis suggests that it is an interglacial beach, which is supported by the presence of pebbles bored by marine organisms and littoral, temperate-climate, marine macro- and micro-fossils. It comprises beds of unconsolidated, bedded, imbricated, well-rounded sands and gravels, overlain by similar, but calcreted, deposits. The gravel fraction is dominated by Magnesian and Carboniferous limestone, with orthoquartzite, flint, and porphyries also present; these are far-travelled erratics that must have derived from the erosion of older glacially transported sediments. Previous workers have described erratics derived from the Oslofjord region of Norway in the raised beach gravel, although rocks diagnostic of a Scandinavian origin have not been recovered as part of this study. The heavy-mineral suite is rich in epidote, dolomite, clinopyroxenes, garnet, tourmaline, and micas. The beach was dated previously by conventional amino acid analysis of the shells, which suggested a Marine Isotope Stage (MIS) 7 age, albeit with a reworked component from MIS 9. This has been confirmed by new optically stimulated luminescence (OSL) dates, which indicate that the beach formed between 240 and 200 ka BP. New amino acid racemisation analyses, using a modified technique, broadly support this interpretation but must await more comparative data before they can be assessed fully. The strong indication of an MIS 7 age for the formation of the beach has implications for the uplift history of northeastern England during the Pleistocene, and indicates an uplift rate of 0.19 mm a−1. The stable isotope geochemistry indicates that the cementation occurred during an interglacial period, whilst U-Series dating of the cement indicates that cementation occurred mostly during the Holocene, and is genetically related to the overlying Devensian till. This work has formed part of a full re-appraisal of the glacial sequence in eastern County Durham, the results of which suggest that the Warren House Formation pre-dates the raised beach, and that the Devensian Horden Till overlies the raised beach.
Boreas, 2009
This research reconstructs ice-sheet processes operating during the Late Devensian in northeast E... more This research reconstructs ice-sheet processes operating during the Late Devensian in northeast England. The article assesses the lithostratigraphy of the Devensian glacial tills of Whitburn Bay, eastern County Durham, and presents the first detailed analysis of petrological, geochemical and biostratigraphical data to reconstruct lithostratigraphy, provenance and iceflow pathways. Two Devensian tractions tills (the Blackhall and Horden tills) are separated by a boulder pavement, pointing to a switch in ice-bed conditions and the production of a melt-out lag prior to deposition of the upper traction till, the Horden Till. The Blackhall Till contains Magnesian Limestone, Carboniferous Limestone, Whin Sill dolerite and Old Red Sandstone, suggesting a northwesterly source, probably from the Midland Valley and the Southern Uplands. The Horden Till contains erratics and heavy minerals derived from crystalline bedrock sources in the Cheviot Hills and northeast Scotland. Within the Horden Till are numerous sand, clay and gravel-filled canals incised downwards into the diamicton which are attributed to a low-energy, distributed, subglacial canal drainage system. Coupled with hydro-fractures and the boulder pavement, this suggests that a partially decoupled, fast-flowing ice stream deposited the Horden Till. The uphill, landward direction of ice movement indicates that the ice stream was confined in the North Sea Basin, possibly by the presence of Scandinavian Ice.
Journal of Quaternary Science, 2011
Journal of Quaternary Science, 2009
This paper investigates the processes governing bedrock bedform evolution in ice sheet and ice st... more This paper investigates the processes governing bedrock bedform evolution in ice sheet and ice stream areas in central West Greenland, and explores the evidence for a cross-shelf ice stream at the Last Glacial Maximum (LGM). To the east of Sisimiut the formation of streamlined bedforms with high elongation ratios and high bedform density has been controlled by geological structure and topography in slow-flowing ice sheet areas. At the coast, the effects of regional flow convergence, caused by coastal fjord orientation, routed ice into the Sisimiut/Itilleq area where it formed an ice stream onset zone. This funnelled ice into an offshore trough (Holsteinsborg Dyb), resulting in a southwesterly regional ice flow direction and the formation of a topographically routed ice stream (Holsteinsborg Isbrae). To the south of this, striae and bedform evidence show that local valley glaciers initially flowed east to west across the coast, but were later redirected by the Itilleq Fjord ice which turned southwestward due to diffluent flow and deflection by Holsteinsborg Isbrae. Roches moutonnées in this area have low elongation ratios and high bedform density, but do not provide unequivocal support for ice streaming, as they are a product of both bedrock structure and changes in ice flow direction, rather than enhanced flow velocities. Cosmogenic surface exposure ages limit maximum ice sheet surface elevation to ca. 755–810 m above sea level in this region. Such ice thickness enabled Holsteinsborg Isbrae to reach the mid/outer continental shelf during the LGM, and to contribute to the formation of a trough mouth fan and the Outer Hellefisk moraines. Initial deglaciation across this region was driven by rising sea level and increasing air temperatures prior to the Bølling Interstadial at ca. 14.5 cal. ka BP. Between 12 and 10 cal. ka BP both increased air and ocean temperatures post the Younger Dryas, and peak sea-level rise up to the marine limit, caused accelerated thinning and marginal retreat through calving, although dating evidence suggests ice streams remained along the inner shelf/coast boundary until at least ca. 10 cal. ka BP, their longevity maintained by increased ice thickness and ice discharge. Copyright © 2009 John Wiley & Sons, Ltd.
Quaternary Science Reviews, 2009
The offshore and coastal geomorphology of southwest Greenland records evidence for the advance an... more The offshore and coastal geomorphology of southwest Greenland records evidence for the advance and decay of the Greenland Ice Sheet during the Last Glacial Maximum. Regional ice flow patterns in the vicinity of Sisimiut show an enlarged ice sheet that extended southwestwards on to the shelf, with an ice stream centred over Holsteinsborg dyb. High level periglacial terrain composed of blockfield and tors is dated to between 101 and 142 ka using 26 Al and 10 Be cosmogenic exposure ages. These limit the maximum surface elevation of the Last Glacial Maximum ice sheet in this part of southwest Greenland to ca 750-810 m asl, and demonstrate that terrain above this level has been ice free since MIS 6. Last Glacial Maximum ice thickness on the coast of ca 700 m implies that the ice sheet reached the mid to outer continental shelf edge to form the Outer Hellefisk moraines. Exposure dates record ice surface thinning from 21.0 to 9.8 ka, with downwasting rates varying from 0.06 to 0.12 m yr À1 . This reflects strong surface ablation associated with increased air temperatures running up to the Bølling Interstadial (GIS1e) at ca 14 ka, and later marine calving under high sea levels. The relatively late retreat of the Itilleq ice stream inland of the present coastline is similar to the pattern observed at Jakobshavn Isbrae, located 250 km north in Disko Bugt, which also retreated from the continental shelf after ca 10 ka. We hypothesise that the ice streams of West Greenland persisted on the inner shelf until the early Holocene because of their considerable ice thickness and greater ice discharge compared with the adjacent ice sheet.
Book Reviews by Bethan Davies
Uploads
Papers by Bethan Davies
Book Reviews by Bethan Davies