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From the Editors

Zachary Abel
Harvard University ’10
Cambridge, MA 02138

zabel@fas.harvard.edu

Ernest E. Fontes
Harvard University ’10
Cambridge, MA 02138

efontes@fas.harvard.edu

This fall has been marked by the first major transition of leadership for The Harvard College
Mathematics Review (HCMR). And with this transition, The HCMR has blossomed from an up-
start student publication to an established organization. Many of our founding members are now
applying to graduate schools and will soon be leaving the journal’s front-line operations. Guided
by their precedent, we welcome and look forward to the contributions of the many new members
that have joined the organization, with whose help we may continue serving as a resource to the
undergraduate mathematical community.

By our combined involvement in various roles in The HCMR’s staff including Problems Editor
and Issue Production Director, we two have been privileged to witness and help the journal grow
into its current state and are honored to guide the organizations for this exciting academic year. Our
optimism springs from the tireless ingenuity of our contributing student and faculty authors, the
continued devotion of our reviewing and editing staffs, and the indefatigable zeal of our produc-
tion directors. These first four issues are a testament to your support, without which the journal
could never have come so far.

We also owe deep gratitude to Professor Peter Kronheimer and Professor Benedict H. Gross
’71 for their advice and guidance, Professor Clifford H. Taubes for continued encouragement, and
the rest of The HCMR’s advisors and sponsors, whose profound contributions have been a foun-
dation for the journal’s success. Our executive board owes much to the administrative assistance
of Dean Paul J. McLoughlin II, David R. Friedrich and the rest of the staff at the Student Or-
ganization Center at Hilles, and to the unceasing, generous support of the Harvard Mathematics
Department.

Finally, the two of us would like to express our gratitude to Editor Emeritus Scott D. Kominers
’09, who continues to offer invaluable expertise and guidance to The HCMR even though he has
stepped down from his position as Editor-In-Chief. Scott was an inspirational leader and founder of
The HCMR, and he will always be remembered fondly by our staff, authors, and countless readers
who have been touched by his work in the journal. Thank you, Scott, and farewell.

Zachary Abel ’10 and Ernest E. Fontes ’10
Editors-In-Chief, The HCMR
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STUDENT ARTICLE

1
Error-Correcting Codes and

Sphere Packings

François Greer†

Harvard University ’11
Cambridge, MA 02138

fgreer@fas.harvard.edu

Xiaoqi Zhu‡

Harvard University ’11
Cambridge, MA 02138

xzhu@fas.harvard.edu

Abstract
The study of arrangements of non-overlapping spheres in space, known as sphere packings, has
given rise to numerous questions such as finding the densest sphere packing and the kissing number
problem. Aside from these theoretical considerations, sphere packings is also closely related to the
theory of codes. This paper introduces the basic problem of finding efficient error-correcting codes
and discusses its geometric interpretation as a sphere packing problem. The paper focuses on
certain families of codes with special properties and explores these properties in connection with
two famous codes.

1.1 Introduction
Consider the n-dimensional real vector space Rn equipped with an inner product 〈·, ·〉 and the met-
ric |v| =

p
〈v, v〉. We ask: how can we embed non-overlapping unit spheres in Rn in order to

maximize the density of the arrangement, that is, the proportion of space filled by the spheres? In
examining such arrangements, called sphere packings, one can consider a special type of arrange-
ment, in which the centers of the spheres form a special structure called a lattice.

A lattice is the abelian group Zn equipped with a homomorphism ϕ : Zn f−→ Rn such that the
images of the standard basis vectors {ei} ∈ Zn form a basis of Rn. Such a lattice is said to be of
rank n. As an example, consider the rank-2 hexagonal lattice, pictured in Figure 1.1. We define
f(e1) = (1, 0) and f(e2) = 1

2
(1,
√

3):
If we arrange spheres with centers located at each of the hexagonal lattice points, we obtain

a sphere packing in R2. Carl Friedrich Gauss famously proved that this is the densest lattice
packing in R2, having a density of π

2
√

3
≈ 0.9069. The hexagonal packing was later proven to be

the densest sphere packing in R2.
While sphere packings are interesting mathematical objects of study by themselves, important

applications of sphere packings arise in the design of signals for use in data transmission. In a
typical system, there is an information source, such as a human speaker, which produces messages
to be communicated to a destination. These messages are then converted to digital form via a
source encoder and transmitted across a noisy channel, such as a copper wire or radio waves. The

†Francois Greer ’11 is a mathematics concentrator and physics minor. His interests lie mainly in algebra
and related topics, and he currently serves as Features Editor of The HCMR.
‡Xiaoqi Zhu ’11 is a mathematics concentrator. Outside of his mathematical interests, he also studies eco-

nomics and plans to minor in government.
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π
3

Figure 1.1: The hexagonal lattice maximally packs spheres in R2.

noise in the channel inevitably scrambles the signal to some extent. In order to recover the original
message from the decoder, we wish to design a set of special signals in which errors can be detected
and corrected. An error-correcting code is one such set of special signals, whose members are
designed to be easily distinguishable from each other even in the presence of noise. Thus, error-
correcting codes help prevent miscommunication of a message by correcting the scrambling that
occurs during transmission. When an error-correcting code is implemented, the channel encoder
takes the output from the source encoder, replaces it with a corresponding code signal, and transmits
the code signal over the noisy channel. The channel decoder subsequently attempts to recover
the original message by taking the received signal and estimating the sent code signal. Using
error-correcting codes, we can communicate messages from a source to a destination with greater
reliability. As we will see, the existence of efficient error-correcting codes is closely related to
dense sphere packings.

In this article, we explore various error-correcting codes and their connections to sphere pack-
ings. We begin by formally defining error-correcting codes and providing intuition for the coding
problem. In Section 1.3, we provide several examples of codes. Sections 1.4 and 1.5 explore cer-
tain families of codes with special properties, which are subsequently used to define and explain
two particular error-correcting codes: the Hamming code and the binary Golay code. Section 1.8
explains several similarities between the Hamming and Golay codes via the theory of quadratic
residue codes. In Section 1.9, we establish the connection between error-correcting codes and Eu-
clidean sphere packings. In particular, we show that the extended Hamming and extended binary
Golay codes can be used to construct the densest lattice packings in dimensions 8 and 24, respec-
tively. We conclude by explaining the concept of perfect codes and providing a full characterization
of such codes.

1.2 Error-correcting Codes
A code C of length n is a set of vectors called codewords in Fnq where Fq is the Galois field of
order q = pr , for p prime. As a subset of a finite vector space, a code is a finite set. A linear
code C is a linear subspace of Fnq , and is thus closed under vector addition and coordinatewise
multiplication by elements of Fq . For this paper, we will restrict our attention to binary linear
codes, i.e. subspaces of Fn2 = {0, 1}n. Channel noise is a probability p < 1/2 that, when a 0 or 1
is sent in a codeword, a different symbol is received by the decoder. Given a code C, we can define
a natural metric called the Hamming distance d(u, v) between two vectors u = (u1, . . . , un) and
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v = (v1, . . . , vn) in C:
d(u, v) = |{i : ui 6= vi}|.

The Hamming distance is the number of coordinates in which u and v differ. This clearly satisfies
the axioms of a metric. The Hamming weight of a vector u = (u1, . . . , un) in C is its distance
from the zero vector, or

wt(u) = |{i : ui 6= 0}|.

Clearly, d(u, v) = wt(u− v). The minimal distance d of a code C is defined as

d = min{d(u, v) : u, v ∈ C, u 6= v}.

For linear codes, d = wt(u), where u is the non-zero codeword of minimal weight. A linear code
of length n, dimension k and minimal distance d is called an [n, k, d] code.

Given d, the corresponding Hamming radius is defined as

ρ =
1

2
(d− 1).

We can construct disjoint closed balls of radius ρ around every codeword in a code of minimal
distance d. In this sense, we can regard a code as a packing of spheres in Fn2 with radius ρ and
centers at each point c ∈ C. In Section 1.9, we will show how a code can be extended to yield a
sphere packing in Rn.

This geometric interpretation serves as a useful method for understanding the process of signal
transmission and error correction. When a message of length k is encoded using an [n, k, d] code
with Hamming radius ρ, it is replaced by a codeword in Fn2 , n ≥ k. During the process of trans-
mission, the signal is scrambled to some extent, but as long as the scrambled signal falls within
the Hamming radius of some codeword, the decoder is able to “correct” the signal by sending it to
the center of the Hamming sphere containing it, i.e. the corresponding codeword.1 The code thus
corrects ρ errors, since it corrects any received signal for which there exists a codeword different
in no more than ρ digits from the signal. Geometrically, correctable signals fall within Hamming
distance ρ of some codeword. One might be tempted to conclude that a good error-correcting code
has large minimal distance so as to maximize ρ. However, such codes are not necessarily effective.

To see this, consider the following code consisting of just two codewords:

C = {(
n timesz }| {

0, . . . , 0), (

n timesz }| {
1, . . . , 1)}.

This is called the repetition code of length n. The repetition code takes every bit of information
and passes it through the channel as the same bit repeated n times. Because the code has minimal
distance n, it has the maximal Hamming radius of a length n code. From the sole standpoint
of error correction, one might say that the repetition code is effective. In particular, if n is odd,
then every signal falls within the Hamming radius of a codeword. Such a code is thus able to
recover a codeword from every possible signal scrambling. However, the repetition code is slow
to implement because it can only encode one bit at a time. Moreover, for the code to work with
reasonable accuracy, n must be large.

Thus, an effective error-correcting code must have a large number of codewords to allow longer
messages to be encoded. Additionally, the length of the code must be small, to ensure efficient
processing. Thus, a good code is one with n small (to reduce delays), k large (to increase message
versatility), and d large (for better error-correcting). These are naturally incompatible goals, hence
the construction of good error-correcting codes is an interesting and difficult problem.

1This does not ensure that the signal is corrected properly; the resulting codeword can be different from the
original codeword.
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1.3 Examples of Codes
We can better understand the concepts presented in the previous section by looking at some addi-
tional examples of codes:

Example 1. An [n, 0, n] code is called a zero code of length n. Such a code consists of simply the
zero vector (0, . . . , 0) ∈ Fn2 . It has dimension 0 and minimal distance n.

Example 2. An [n, n, 1] code is called a universe code of length n. Such a code consists of all
vectors (c1, . . . , cn) ∈ Fn2 . It has dimension n (since it is equal to Fn2 ) and minimal distance 1.

Example 3. An [n, 1, n] code is called a repetition code of length n. Such a code consists of the
vectors (0, . . . , 0) and (1, . . . , 1). It has dimension 1 (since it is isomorphic to F2) and minimal
distance n.

Example 4. An [n, n − 1, 2] code is called a zero-sum code of length n. Such a code consists
of all vectors (c1, . . . , cn) ∈ Fn2 such that

P
ci = 0. It has dimension n − 1, which we can see

explicitly by considering the basis

{(1, 1, 0, . . . , 0, 0), (0, 1, 1, . . . , 0, 0), · · · , (0, 0, 0, . . . , 1, 1)}

for the code. It has minimal distance 2 since a vector (c1, . . . , cn) with only one non-zero digit hasP
ci = 1 6= 0.

1.4 Dual Codes
Given a linear code C, we define the dual code C∗ of C to be the orthogonal complement of C in
Fn2 with respect to the dot product. More formally,

C∗ = {v ∈ Fn2 : v · c = 0 ∀c ∈ C}.

It can be easily shown that dimC + dimC∗ = n, and that (C∗)∗ = C. A code is said to be
self-dual if C∗ = C.

Revisiting our previous examples, we see that the universe code of length n (Example 2) is the
dual code of the zero code of length n (Example 1), because the dot product of the zero vector with
any vector in Fn2 vanishes. It is also easy to see that the zero-sum code of length n (Example 4) is
the dual code of the repetition code of length n (Example 3), because the dot product of (0, . . . , 0)
with any vector vanishes, and

(1, . . . , 1) · (c1, . . . , cn) = 0⇔
X

ci = 0.

1.5 Cyclic Codes
A code C is cyclic if (c0, . . . , cn−2, cn−1) ∈ C implies that (cn−1, c0, . . . , cn−2) ∈ C. It is
convenient to represent a cyclic code of length n as a polynomial quotient ring. A codeword
c = (c0, . . . , cn−1) ∈ C can be written as a polynomial:

c(x) = c0 + c1x+ . . .+ cn−2x
n−2 + cn−1x

n−1.

Consider the ring R = F2[x]/(xn − 1), where (xn − 1) is the ideal generated by the polynomial
xn − 1. Then the cycling action corresponds to multiplication by x in R:

xc(x) = c0x+ c1x
2 + . . .+ cn−2x

n−1 + cn−1x
n

∼ c0x+ c1x
2 + . . .+ cn−2x

n−1 + cn−1x
n − cn−1(xn − 1)

= cn−1 + c0x+ c1x
2 + . . .+ cn−2x

n−1.

A cyclic code corresponds to an ideal of R because it is closed under (polynomial) addition and
under cycling, or multiplication by x. Since F2[x] is a principal ideal domain, there exists a gen-
erating polynomial g(x) for C. From a computational standpoint, an interesting problem is to
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represent C as a polynomial field, i.e. the quotient of F2[x] by a maximal ideal (an ideal generated
by an irreducible polynomial). While an irreducible polynomial of degree n always exists, working
with such a polynomial is often rather cumbersome. Good candidates for computationally simple
irreducibles are trinomials of the form xn + ax+ b. It remains an open problem in mathematics to
determine whether such irreducible trinomials exist over F2 for all n.

Returning to the above examples, the universe code has generator g(x) = 1. The repetition
code has generator g(x) = 1 + x+ . . .+ xn−1. The zero-sum code has generator g(x) = 1 + x,
which incidentally corresponds to our choice of basis. Note that these generators are not unique,
but can nonetheless be useful for defining more complex codes.

1.6 Hamming Codes
The Hamming code H7 is a binary cyclic code of length 7 with generating polynomial g(x) =
1 + x+ x3. By definition, it is spanned by the set

G = {(1, 1, 0, 1, 0, 0, 0),

(0, 1, 1, 0, 1, 0, 0),

(0, 0, 1, 1, 0, 1, 0),

(0, 0, 0, 1, 1, 0, 1),

(1, 0, 0, 0, 1, 1, 0),

(0, 1, 0, 0, 0, 1, 1),

(1, 0, 1, 0, 0, 0, 1)}.

The first four vectors in G are linearly independent, and we can obtain the latter three vectors
by linear combination of the first four vectors. Thus, the Hamming code is a 4-dimensional linear
subspace of F7

2 and has 24 = 16 codewords. It can be checked that the Hamming code has minimal
distance 3, i.e. any two codewords differ in at least three coordinates. Thus, the Hamming code is
a [7, 4, 3] code.

Given a code C, we can “extend” the code by appending a digit to the end of every codeword
such that the sum of the digits of each codeword is zero. This digit is called a zero-sum check digit.
Formally, given a code C, the extended code is defined as

C′ =

(
(c1, . . . , cn, cn+1) :

n+1X
i=1

ci = 0, (c1, . . . , cn) ∈ C

)
.

The extended Hamming code H8 is a binary cyclic code of length 8 and dimension 4 gener-
ated by the basis

G′ = {(1, 1, 0, 1, 0, 0, 0, 1),

(0, 1, 1, 0, 1, 0, 0, 1),

(0, 0, 1, 1, 0, 1, 0, 1),

(0, 0, 0, 1, 1, 0, 1, 1)}.

Notably, the coordinates of every codeword in H8 consists of precisely four 0’s and four 1’s,
with the exception of the codewords (0, 0, 0, 0, 0, 0, 0, 0) and (1, 1, 1, 1, 1, 1, 1, 1). It follows im-
mediately that the extended Hamming code is doubly even, i.e. the sum of all coordinates in every
codeword is divisible by four. Moreover, the extended Hamming code has minimal distance 4, and
is therefore an [8, 4, 4] code. It can be checked that the extended Hamming code is self-dual.

Since the extended Hamming code has minimal distance 4, it has a Hamming radius of ρ =
3
2

. The extended Hamming code can therefore correct all single-bit errors. Richard Hamming
published the original [7, 4, 3] Hamming code in 1950. At the time, existing error-correcting codes
were either inefficient (such as the repetition code) or unrobust in their error-correction (such as
Bell’s ‘two-out-of-five’ code). Hamming searched for a code that would have both a large Hamming
distance and a fast information rate. The result was the [7, 4, 3] Hamming code.
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1.7 Golay Codes
The binary Golay code G23 is a binary cyclic code of length 23 with generating polynomial g(x) =
1 + x2 + x4 + x5 + x6 + x10 + x11. It can be checked that the Golay code is a [23, 12, 7] code.

The extended binary Golay code G24, constructed by appending a zero-sum check digit to
the end of each codeword in G23, is a 12-dimensional linear subspace of F24

2 and has 212 = 4096
codewords. All codewords in the extended binary Golay code have Hamming weight 0, 8, 12, 16 or
24. This implies that the extended binary Golay code is doubly even with minimal distance 8 (and
is therefore a [24, 12, 8] code). It can be checked that the extended binary Golay code is self-dual.

Since the extended binary Golay code has minimal distance 8, it has a Hamming radius of
ρ = 7

2
. The extended binary Golay code can therefore correct all triple-bit errors. The original

[23, 12, 7] Golay code, discovered by Marcel Golay in 1949, is the only error-correcting code
known capable of correcting any combination of three or fewer random errors in a sequence of 23
elements.

As G24 is a high-dimensional code, it can be practically applied with reasonable efficiency.
During the 1979 and 1980 NASA Deep Space Missions, the Voyager 1 and Voyager 2 spacecrafts
needed to transmit hundreds of high-definition color images of Jupiter and Saturn. Transmission of
these images involved communicating a large amount of data via a constrained telecommunications
bandwidth. In order to transmit the data efficiently, NASA implemented the Golay code. Although
there were codes that could correct greater errors (such as the [32, 6, 16] Hadamard code, which
corrects up to 7-bit errors), the Golay code was preferred because it yields a much higher data rate.

1.8 Quadratic Residue Codes
Let p be an odd prime. We define the set of quadratic residues modulo p as

Q := {n2 mod p : n ∈ Fn, n 6= 0}.

It is easy to see thatQ forms a multiplicative group, since a2b2 = (ab)2 and (a2)−1 = (a−1)2. We
can use this idea to construct an important class of cyclic codes called quadratic residue codes,
which reveal a connection between the Hamming and Golay codes. In order to do this, pick p
such that 2 is a quadratic residue modulo p. Let ζ be a primitive p-th root of unity in some finite
extension field K ⊃ F2.

Lemma 5. The polynomial g(x) =
Q
j∈Q

(x− ζj) has coefficients in F2.

Proof. Let us write

g(x) =

nX
k=0

akx
k.

By construction, it is clear that each ak is a symmetric polynomial in the elements ζj ∈ K.
We claim that a2

k = ak. In a field of characteristic 2, (α + β)2 = α2 + β2 (this is a simple
computational exercise). Hence, the operation of squaring permutes elements in the symmetric
polynomial via (ζj)2 = ζ2j (2 is a quadratic residue so 2Q = Q). Thus we have a2

k = ak ⇒
ak = 0 or 1⇒ g(x) ∈ F2[x]. 2

The cyclic code of length p generated by g(x) is known as the quadratic residue code Qp.
A well-known theorem of number theory states that the primes p for which 2 is a quadratic

residue must be of the form 8k ± 1. Thus we can construct quadratic residue codes for p =
7, 17, 23, . . .All such codes have dimension (p+1)/2 and minimal distance d ≥ √p. Furthermore,
if p = 8k − 1 then the code obtained by appending a zero-sum check digit to the codewords in
Qp is self-dual. The Hamming and Golay codes are two low examples of quadratic residue codes,
which is why they share several remarkable properties.
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1.9 Euclidean Sphere Packing Construction
As previously demonstrated, a binary code C of length n corresponds to a sphere packing in Fn2 .
We can additionally construct from every code a sphere packing in Rn with centers at each point
x = (x1, . . . , xn) such that x ≡ c mod 2 for some c ∈ C. A lattice packing is obtained if and
only if C is linear.

We can apply this construction to the extended Hamming code and the extended Golay code to
generate some remarkable lattices. FromH8, one can construct a lattice H8 ' E8, where

E8 =

(
(xi) ∈ Z8 ∪

„
Z +

1

2

«8

:

8X
i=1

xi ≡ 0 mod 2

)
.

That is,E8 is the set of points in R8 such that either all coordinates are integers or are half-integers,
and the sum of all coordinates is an even integer. Notably, E8 is the densest lattice packing in R8.
Hence, the sphere packing construction applied to H8 yields a lattice packing isomorphic to the
densest lattice packing in R8.

Even more remarkably, the construction can be applied to the extended binary Golay code to
generate a lattice isomorphic to the Leech lattice Λ24, the densest lattice packing in R24. For more
information regarding these constructions as well as E8 and Λ24, we refer the reader to [CS, ch. 5].

1.10 Perfect Codes
When a codeword is transmitted, it may be scrambled in such a way that the resulting signal no
longer falls within the Hamming radius of any codeword. This problem is resolved by perfect codes.
A codeC of length n is perfect if every element of Fn2 is contained in a Hamming sphere about one
of the codewords. A perfect code with Hamming radius ρ thus has the property that every received
signal lies within a Hamming distance of ρ from exactly one codeword. In essence, every received
signal has a well-defined message. In the language of sphere packings, perfect codes are sphere
packings in Fn2 with maximal density 1. Perfect codes have been classified into four categories:

1. Trivial codes (universe codes, zero code, repetition codes of odd length)

2. Hamming codes (H7 andH8)

3. Nonlinear binary codes (not fully enumerated)

4. Golay codes (G23 and G11)

In this paper, we examined all perfect linear codes with the exception of the ternary Golay code
G11, a 6-dimensional linear subspace of F11

3 with minimal distance 5. Currently, the only known
perfect non-binary linear code is G11.

We now derive a proposition useful for identifying perfect linear codes. The Hamming bound
can be stated as follows:

Theorem 6. For an [n, k, d] code C with Hamming radius ρ = 1
2
(d− 1),

2n ≥ 2k
bρcX
i=0

 
n

i

!
.

Proof. C has 2k codewords. For each codeword c ∈ C, there are
`
n
i

´
elements in Fn2 that differ

from c in exactly i positions. Thus, 2k
Pbρc
i=0

`
n
i

´
is simply the total number of vectors in Fn2 that

lie within a Hamming distance of ρ of some codeword. Since this number cannot exceed the total
number of vectors in Fn2 , we obtain the desired inequality. 2
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Clearly, an [n, k, d] code C is perfect if and only if the Hamming bound is an equality. There-
fore, the Hamming bound provides a method for verifying perfect codes. ForH7, we have

27 = 24

" 
7

0

!
+

 
7

1

!#
.

For G23, we have

223 = 212
3X
i=0

 
23

i

!
.

Proofs thatH8, G11 and the so-called “trivial codes” are perfect follow in the same fashion.
Unlike G23, the extended binary Golay code is not perfect. However, it can be verified that

every vector in F24
2 lies within a Hamming distance ρ + 1 of some codeword. Such codes are

known as quasi-perfect codes.
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Abstract
This paper rephrases Kummer’s proof of many cases of Fermat’s Last Theorem in contemporary
notation that was in fact derived from his work. Additionally, this paper develops a reformulation
of the proof using class field theory from a modern perspective in a manner similar to the tactics
used for the complete proof, and describes how Kummer’s proof strategy can generalize to solve
the theorem for a broader set of primes.

2.1 Introduction
Ernst Kummer was a 19th century mathematician who came across Fermat’s Last Theorem in
attempts to generalize the law of quadratic reciprocity and study higher reciprocity laws. While
he described those as “the principal subject and the pinnacle of contemporary number theory,” he
considered Fermat’s Last Theorem a “curiosity of number theory rather than a major item” ([Ed]).
A priori, this was not an unreasonable opinion of a problem that could be understood by a 12-year-
old. We state this mere curiosity below.

Theorem 1. For any integer n > 2, the equation xn + yn = zn has no non-trivial solutions in the
integers, i.e. if x, y, z ∈ Z satisfy this equation, then xyz = 0.

Despite his disinterest, Kummer made the first substantial step in proving a part of Fermat’s
Last Theorem for many cases. This came only a few weeks after Gabriel Lamé incorrectly an-
nounced that he had found a complete proof [Ed]. Lamé did make the breakthrough in attempting
to decompose xn + yn into linear factors by introducing the complex numbers satisfying ζn = 1,
known today as roots of unity. This allowed for the algebraic identity

xn + yn = (x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζn−1y).

Thinking this was the only new step needed to find the complete solution, Lamé presented a proof
in March 1847 using this fact while assuming incorrectly that this was a unique decomposition
into prime ideals [Ed]. A few years earlier, Kummer had already discovered that such unique
factorization properties did not necessarily hold in the fields Q(ζp) generated by these roots of
unity. He introduced the origins of the notion of an ideal in an attempt to salvage the absence of
unique factorization, as well as the class number and an analytic formula describing it [Ri]. A few
weeks after Lamé presented his incorrect proof, Kummer wrote a correct proof for a certain set
of prime. These primes had a property allowing for unique factorization to work in the step of
Lamé’s proof that went wrong. He called these regular primes, and in his later work, continued his
examination of both regular and non-regular primes to find straightforwards characterizations and
deeper properties. In his proof and this further examination, Kummer touched on ideas that would
be developed into present-day ideal theory, Kummer theory, p-adic analysis, class field theory,

†Ila Varma is currently a senior studying mathematics at California Institute of Technology. Her research
interests fall into the areas of number theory and algebraic geometry.
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etc. The core ideas behind modern problems such as the Birth-Swinnerton-Dyer conjecture for
the complex multiplication case and the theorems of Clausen and von Staudt are influenced by
Kummer’s work, not to mention the ideas that led to the eventual complete solution of Fermat’s
Last Theorem ([vdP]).

In this article we will focus on Kummer’s ideas regarding and influence on the solution of Fer-
mat’s Last Theorem, and thus we will stay in the realm of proving the theorem for regular primes.
Many of the preceding lemmas are given in detail as a demonstration of the machinery needed, but
additionally, a modern perspective is described, along with the generalization of Kummer’s idea
to a larger set of primes. Section 2.2 gives a background on cyclotomic fields and describes some
properties needed for the proof based on Kummer’s original work described in Sections 2.3 and 2.4.
Section 2.5 reformulates the proof using an approach matching the strategies used for the complete
solution. Finally, Section 2.6 is devoted to proving Fermat’s Last Theorem for the most general
characterization of primes on which Kummer’s basic argument holds.

2.2 Background
We must first describe general notation and some basic facts on cyclotomic fields and algebraic
number theory. Then, we can go on to understand the core idea from the proof, and in particular
where the regularity of primes fits in and therefore restricts the cases of Fermat’s Last Theorem.

Roots of Unity and Cyclotomic Fields
For any odd prime p, we denote by ζp a fixed primitive p-th root of unity, i.e. a ζp ∈ C such
that ζkp 6= 1 for any k = 1, . . . , p − 1 while ζpp = 1. It, along with all of its powers, is a root of
the polynomial xp − 1, hence it satisfies the equation xp = 1, the motivation for its name. To find
its minimal polynomial, we note that the only rational p-th root of unity is ζpp = 1, hence we can
factor xp − 1 = (x− 1)Φp(x) where

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1.

This is called the p-th cyclotomic polynomial as it is the minimal polynomial for ζp. Note that
the other p-th roots of unity are powers of ζp, and are all roots of Φp(x) (except for ζpp = 1).
From an analytic perspective, we can think of ζp = e2πi/p, and subsequently, ζkp = e2πik/p.
Here, we can see that all powers of ζp lie on unit circle (f(z) = e2πiz) in the complex plane, and
furthermore, the shape described with ζkp as vertices is a regular p-gon. Furthermore in C, we can
factor Φp(x) =

Qp−1
k=1(x−ζkp ) = xp−1 +xp−2 + · · ·+x+1. From here, we know that the product

of the non-trivial p-th roots of unity (i.e. not including 1) has magnitude 1 (the constant coefficient)
and the sum of the non-trivial p-th roots of unity also has magnitude 1 (the xp−2 coefficient). More
explicitly, we have the relation

ζp + ζ2
p + ζ3

p + · · ·+ ζp−1
p = −1.

Hence, we have that the sum of all of the p-th roots of unity is 0, i.e. any p-th root of unity can be
expressed as a linear sum of its other powers. It is in fact true that that any set of p − 1 roots of
unity are linearly independent while the whole set is not.

We can also talk about the field generated by p-th roots of unity over Q known as the p-th
cyclotomic field. Note that this field, denoted K = Q(ζp), is automatically the splitting field
for Φp(x) over Q as we have seen before that the rest of the roots are just subsequent powers
of ζp. This extension has degree p − 1, coinciding with the degree of Φp(x). Furthermore, the
group of automorphisms well-defined on K that fix Q is cyclic. More explicitly, the Galois group,
Gal(K/Q) ∼= (Z/pZ)× where the automorphism

ˆ
σk : ζp 7→ ζkp

˜
7→ k.

A Bit of Algebraic Number Theory
Stepping back from the specifics of cyclotomic fields, we can realize many useful properties of
number fields, i.e. algebraic extensions over Q from algebraic number theory. First note that any
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monic polynomial with coefficients in Z that is known to have roots in Q in fact has roots in Z (this
is the Rational Root Theorem from high-school algebra). This interesting property can be used to
describe the structure of Z within Q, and we generalize this to any number fieldK. The elements of
K which are roots of monic polynomials with coefficients in Z are known as the algebraic integers
of K and furthermore produce a ring of integers, generally denoted OK . As an example, the ring
of integers of any p-th cyclotomic field Q(ζp) is Z[ζp].

Like any other ring,OK has ideals, and one property is that the ring of integers for any field K
is a Dedekind domain, a type of integral domain with the added property that any ideal decomposes
uniquely into a product of prime ideals. It is not necessarily true, however, that the elements of a
Dedekind domain decompose uniquely into a prime or irreducible elements. It is not hard to find
an example displaying this unfortunate fact: if K = Q(

√
−5), then OK = Z[

√
−5], and we can

consider 6 = 2·3 = (1+
√
−5)·(1−

√
−5). Nevertheless, we can see that if all the ideals of a given

OK are principal, then the unique decomposition of prime ideals would give way to unique prime
factorization of elements, as the factorization of any element α ∈ OK would be characterized by
the decomposition of the ideal (α) into prime ideals generated by single irreducible elements. This
motivates the construction of the ideal class group of K which is, loosely speaking, the quotient
group of all the ideals in OK modulo the principal ideals of OK . We are very lucky to find that
this group is always finite, and in fact, when the order is 1, we are in the previously-described case,
in which all ideals of OK are principal. The class number of K, denoted hK , is the order of this
ideal class group. Hence, if hK = 1, OK has unique prime factorization of elements. If hK > 1,
then OK does not have unique prime factorization, but we can be more specific than that. The
class number does describe the extent to which unique factorization holds; for example, there are
properties about length of decompositions in fields of class number 2 that do not hold for fields
with higher class number.

Regular Primes
The property of whether a prime p is regular can be characterized based on the class number of
K = Q(ζp). Explicitly, the class number hK is the order of the ideal class group, but as described
above, we think of the class number as a scalar quantity describing how “close” elements of OK
are to having unique factorization.

Definition 2. An odd prime p is regular if the class group of K = Q(ζp) has no p-torsion, i.e. if
the class number hK is prime to p.

It is astonishing to think that such a fact should be related to the ease of proving Fermat’s Last
Theorem, but it is in fact the case. Lamé’s first step of decomposing a nontrivial counterexample
xp + yp = zp in the field Q(ζp) only goes so far when we don’t have unique prime factorization
of the elements. It is easy to work with zp when considering it as an ideal of OK , but at some
point, we must be able to look at specific elements of the ring of integers rather than the ideals they
generate. A priori as ideals, we get

(z)p = (x+ y)(x+ ζpy)(x+ ζ2
py) · · · (x+ ζp−1

p y).

On one side, we have a p-th power of a principal ideal, and on the other, we have a decomposition
into p ideals that are not only distinct, but can be shown to be relatively prime. The property of
unique decomposition into prime ideals tells us that every ideal (x + ζkp y) must independently be
a p-th power of an ideal Ak. Thinking about the structure of the ideal class group, we can consider
what kinds of ideals of OK have a p-th power which is principal. As elements of this quotient
group, the ideals of OK modulo the principal ideals of OK , it is clear that (x + ζkp y) is identified
with the trivial element, but it is not necessarily true that Ak is. Nevertheless, if we have the added
assumption that the prime p is regular, then we know that the class number is prime to p, hence no
element in the ideal class group can have order pwithout being trivial. This directly implies thatAk
is principal, and we can in fact think about the element αk generating this ideal rather than the ideal
(αk) = Ak itself. From this point onward, Kummer’s proof consists of algebraic manipulations of
units and algebraic integers in K leading to a contradiction that cannot be done simply by working
with ideals. It is easy to see that the regularity of p is the broadest way to guarantee that the p-th
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“roots” of the ideals generated by x+ζkp y are in fact principal, bringing the entire machinery down
to elements of OK .

Prime Decomposition
It is interesting to note that prime ideals of a base field may not stay prime in an extension. For
example, we can show that in K = Q(ζp), the ideal generated by p decomposes as

(p) = (1− ζp)p−1.

where (1 − ζp) turns out to be a prime ideal of OK . In algebraic number theory, we are quite
interested in how a prime ideal such as (p) in a base field Q occurs in a larger field such as K. It is
“easiest” when a prime stays inert, i.e. stays prime in the larger field extension. However, in many
cases, such as the above, a prime ideal of the base field will decompose further in the extension, and
it is particular interesting to note when such a decomposition includes repeated factors, i.e. when
the prime ramifies. The case where the prime of the base field can be written as a power of a single
prime ideal in the extension is known as total ramification. Additionally, for total ramification, we
require that the power of the single ideal coincides with the degree of the extension. As an example,
we will prove that p totally ramifies in K as a power of (1 − ζp). To prove the above fact about
(p), we first introduce the notion of cyclotomic units.

Definition 3. The cyclotomic units of OK = Z[ζp] are elements of the form

ζrp − 1

ζsp − 1
where p - rs.

It is easy to see that these are units as they have obvious inverses,
ζsp−1

ζrp−1
, hence the cyclotomic

units are in fact a subgroup of O×K . Furthermore, we see that since p - rs, we can find t such that
r = st mod p hence allowing us to express

ζrp − 1

ζsp − 1
=
ζstp − 1

ζsp − 1
= 1 + ζsp + · · ·+ ζs(t−1)

p ∈ OK .

Lemma 4. The principal ideal generated by p in OK decomposes as (1− ζp)p−1, and hence the
principal ideal (1− ζp) is prime in OK .

Proof. Since the minimal polynomial of ζp is Φp(x) = xp−1
x−1

, as a polynomial in K[x], it can be
decomposed as

Φp(x) =

p−1Y
i=1

(x− ζip).

Note that if we plug in x = 1 to Φp(x) we get from the polynomial in Q[x] and the polynomial in
K[x] that

p =

p−1Y
i=1

(1− ζip).

Note that 1 − ζp is a unit away from 1 − ζip, i.e. 1 − ζip = u(1 − ζp) where u is the cyclotomic

unit
ζip−1

ζp−1
. Thus we have an equality of ideals (1 − ζp) = (1 − ζip). This, combined with the

decomposition of p gives us (p) = (1 − ζp)
p−1. Furthermore, since [K : Q] = p − 1, from

algebraic number theory we know that (p) can have at most p − 1 factors, hence the previous
decomposition of (p) is in fact a prime decomposition, so we also get that (1− ζp) is a prime ideal
in OK . 2
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2.3 Preliminaries
We now move to definitions and facts needed specifically for Kummer’s proof. The following
propositions and lemmas are crucial in Kummer’s proof. The following lemmas allow us to relate
the algebraic integers in OK with the rational integers in Z. Kummer’s main breakthrough in his
proof was to work in an extension of Q where (xp + yp) decomposed, so within the proof, he must
go back and forth when dealing with elements of OK and elements of Z using properties outlined
by these lemmas.

Lemma 5. Suppose α = a0 + a1ζp + · · · + ap−1ζ
p−1
p with each ai ∈ Z. If ai = 0 for at least

one i, then if n ∈ Z such that n | α, then n | aj for all j.

Proof. We know that 1 + ζp + · · ·+ ζp−1
p = 0, hence any p− 1 elements of {1, ζp, . . . , ζp−1

p } is
a basis for OK over Z. By assumption ai = 0, so we choose the corresponding basis without ζip.
The other coefficients make α an element of OK with respect to this basis. Hence, if n | α, then n
must divide the coefficients of the basis representation of α, i.e. n | aj for each j. 2

Lemma 6. Let α ∈ OK . Then αp is congruentmodp to an element of Z.

Proof. Take {1, . . . , ζp−2
p } as the basis ofOK . We can then writeα = a0+a1ζp+· · ·+ap−2ζ

p−2
p ,

where ai ∈ Z. This gives

αp ≡ ap0 + (a1ζp)
p + · · ·+ (ap−2ζ

p−2
p )p ≡ ap0 + ap1 + · · ·+ app−2 mod p,

since all nontrivial binomial coefficients are congruent to 0 mod p. 2

Lemma 7. Assume x, y, z are a nontrivial solution to the equation xp + yp = zp. The ideals
(x+ζipy) with i ranging between {0, . . . , p−1} are either relatively prime as ideals or have exactly

1 common factor (1−ζp) such that the ideals generated by the quotients
x+ζipy

1−ζp are relatively prime.

Proof. We make the assumption that x and y are relatively prime. Suppose ∃ p a prime ideal of
OK such that p | (x+ ζipy) and p | (x+ ζjpy). From above, we know that (1− ζp) = (1− ζkp ) as
ideals when p - k. Then p | (x+ ζipy)− (x+ ζjpy). However,

(x+ ζipy)− (x+ ζjpy) = (ζipy − ζjpy) = (1− ζp)(y).

Hence, p | (1 − ζp) or p | (y). Similarly, we know that (x + ζipy) = (ζj−ip x + ζjpy), hence
p | (ζj−ip x + ζjpy) − (x + ζjpy). Since (ζj−ip x − x) = (1 − ζj−ip )(x) = (1 − ζp)(x), we get
that p | (1 − ζp) or p | (y). Since x and y are coprime, one of these two statements implies that
p | (1 − ζp). However, since (1 − ζp) is a prime ideal, we in fact get equality. Furthermore, note
that if (1− ζp) | (x+ ζkp y), then (1− ζp) | (x+ ζk+1

p y) since

(x+ ζk+1
p y) = (x+ ζkp y) + (ζkp )(ζp − 1)(y).

Thus, if (1−ζp) is a factor of (x+ζipy) for one i, then it is a factor for all i. In particular, we get that
x+y ≡ 0 mod 1− ζp. Since x+y ∈ Z, then x+y ≡ 0 mod p, however xp+yp ≡ x+y mod p,
hence z ≡ zp ≡ 0 mod p, i.e. p | z. If p - z, we’ve arrived at a contradiction here, and thus (1−ζp)
cannot be a common factor so in fact, the ideals (x+ ζipy) have no common factors. If p | z, then
we have that the only common factor between any two (x+ ζipy) and (x+ ζjpy) is 1− ζp.

It remains to be shown that (1−ζp)2 is not a factor of any two (x+ζipy) and (x+ζjpy). Recall
that we are assuming that p | z, hence we can further assume that p - y; if this were the case, then
p | x as well, and we could reduce the counterexample xp+yp = zp by a factor of pp. (During the
proof, we use this argument to claim that the counterexample x, y, z is relatively prime.) Without
loss of generality, assume that i > j and note that

(x+ ζipy)− (x+ ζjpy) = ζipy − ζjpy = ζjpy(ζi−jp − 1).
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From the fact that (1 − ζp) = (1 − ζi−jp ) = (ζi−jp − 1) as ideals, we have that 1 − ζp divides
ζi−jp −1 exactly once. Furthermore, since 1−ζp | y then p | y (since y ∈ Z) and 1−ζp is relatively
prime to ζjp , we have that 1− ζp | (x+ ζipy)− (x+ ζjpy) but (1− ζp)2 - (x+ ζipy)− (x+ ζjpy).

Hence, we know that the quotients
x+ζipy

1−ζp are relatively prime. 2

For any prime p, Q(ζp) is automatically a subfield of C but not of R. We can see that the
automorphisms of Gal(K/Q) never send Q(ζp) into R. Furthermore, one of these automorphisms
is the map of conjugation, sending a+ bi 7→ a− bi, its conjugate. Since the automorphisms have
a group structure, we can pair each automorphism σ ∈ Gal(K/Q) with its conjugate, the unique
automorphism described by composing σ with the map of conjugation. Note that this is equivalent
in pairing elements of (Z/pZ)× with their additive inverse. However, there is a large subfield K+

in Q(ζp) which sits inside of R, and properties of K and this subfield K+ gives us information on
the number of independent elements of each field and relates the corresponding rings of integers,
OK and OK+ with the use of Dirichlet’s Unit Theorem, stated below.

Theorem 8 (Dirichlet’s Unit Theorem). For any field K over Q with r real embeddings and s
conjugate pairs of complex embeddings, the unit groupO×K is finitely generated with rank equal to

rank(O×K) = r + s− 1.

Proposition 9. Fix some odd prime p, and let K = Q(ζp). We have the following properties.
(1) K is a totally complex field, i.e. ∃ 0 real embeddings and p−1

2
pairs of conjugate complex

embeddings.
(2) The maximal totally real subfield of K is K+ = Q(ζp + ζ−1

p ), i.e. K ∩ R = Q(ζp + ζ−1
p ).

Furthermore, OK+ = Z[ζp + ζ−1
p ] and [K : K+] = 2.

(3) K and K+ have the same unit rank, hence the embedding of the corresponding unit groups
O×
K+ ↪→ O×K has finite index.

Proof. (1) Since all nontrivial p-th roots of unity are primitive, the automorphisms ζp 7→ ζkp are
embeddings into C that cannot be entirely contained in R. Thus, there are no real embeddings and
there are p− 1 complex embeddings, hence r = 0 and s = p−1

2
.

(2) Geometrically, we can see that ζp + ζ−1
p ∈ R as their imaginary coefficients are additive

inverses, hence Q(ζp + ζ−1
p ) is a subfield of K entirely contained in R. Note that ζp is the root of

a polynomial in Q(ζp + ζ−1
p )[x] defined as f(x) = x2− (ζp + ζ−1

p )x+ 1. Since f(x) is degree 2
and x− ζp is not a polynomial in Q(ζp + ζ−1

p )[x], f(x) is automatically the minimal polynomial
for ζp over Q(ζp+ζ−1

p ), hence [K : Q(ζp+ζ−1
p )] = 2. This additionally shows that Q(ζp+ζ−1

p )
is the maximal real subfield in K since we have already seen that K is not totally real.
(3) By Dirichlet’s Unit Theorem, we know that the rank of O×K is a r + s − 1 = p−1

2
− 1.

Furthermore, as K+ is totally real, the rank of O×
K+ is [K+ : Q]− 1 = p−1

2
− 1. 2

Units in O×K can be be easily described in terms of units in O×
K+ since the maximal real

subfield is rather large in such a manner that the index of the unit groups is finite. We show in the
following proposition that any unit of K can be decomposed into a product of p-th root of unity
and a totally real unit in O×

K+ .

Proposition 10. For any u ∈ O×K , ∃ v ∈ O×
K+ and an integer r such that u = ζrpv. It follows that

the index of O×
K+ in O×K is p.

Sketch of proof. Consider some arbitrary unit u ∈ O×K and let α = u
u

where u denotes the image of
u under the map of conjugation. It follows that α is an algebraic integer and additionally, |α| = 1.
Furthermore, |σk(α)| = 1 for each σk ∈ Gal(K/Q) since for all k, σk(u) = σk(u). It is a fact
used often in algebraic number theory that any algebraic integer whose Galois conjugates all have
norm 1 must be a root of unity, so in particular, u

u
= ±ζkp for some k. It remains to show that

α = +ζkp . Assuming otherwise, we arrive at the contradiction that either 2 or u is contained in the
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prime ideal generated by (1−ζp) from expressing both u and u mod 1− ζp. These two statements
cannot be true based on a technical norm argument (not discussed here) in addition to the fact that
u is a unit. Hence, we have α = ζkp for some k. From here, we find r such that 2r ≡ k mod p, we
set v = ζ−rp u, hence u = ζrpv. (Note that if α = −ζkp , then finding such an r does not work.) We

see that v = ζ−rp u = ζrpu, hence v
v

=
ζ−rp u

ζrpu
= ζ−2r

p α = 1, so v is in fact real, and therefore an

element of K+. 2

Lemma 11 (Kummer’s Lemma). If p is a regular prime and u is in O×K such that u is congruent
mod p to an element of Z, then u is a p-th power of an element of O×K .

The statement above, although seemingly simple, uses a lot of machinery, including the class
number formula, p-adic L-functions, and the characterization of regular primes using Bernoulli
numbers. In fact, when Kummer first defined regular primes, he included this property as another
condition and proved it much later. Kummer’s proof of this statement is given in [Ed].

2.4 Case I: The Main Argument
We are now ready to present the proof when p - xyz, generally known as the first case of Fermat’s
Last Theorem for regular primes. With this added assumption, Lemma 7 proves that the ideals
(x + ζipy) are pairwise coprime. The main steps in this proof are obtained from this fact and the
regularity of p, and are also used in the main argument for the second case and its generalizations
in the following sections. The proof from this section uses the main ideas from Kummer’s proof
but is reformulated in the language of modern mathematics and uses some new lemmas. It is based
on the proof in [Wa]. We restate the assumptions for this case of the theorem that will be proved in
this section.

Theorem 12. Suppose p > 3 is a regular prime. Then

xp + yp = zp, p - xyz

has no nontrivial solutions in the rational integers, i.e. any integer solution (x, y, z) has the prop-
erty that xyz = 0.

Proof. Fix some regular prime p > 3, and assume that we have a nontrivial x, y, z ∈ Z satisfying
the hypothesis. First, we can assume x, y, z are relatively prime. (Otherwise, we could divide by
their greatest common denominator to get another counterexample.) Additionally, we show that for
any such counterexample (x, y, z) we can rearrange to ensure that x 6≡ y mod p (which will be
needed later). Suppose that x ≡ y ≡ −z mod p. Then note that

z ≡ zp ≡ xp + yp ≡ x+ y ≡ −2z mod p =⇒ 3z ≡ 0 mod p,

then p - z implies p | 3, a contradiction to the fact that p > 3. Since we know that x ≡ y 6≡
−z mod p, we can exchange y and−z to get another counterexample satisfying all the hypotheses
and x 6≡ y mod p.

Kummer’s Main Argument
In OK , we have the decomposition of ideals

(z)p = (zp) = (xp + yp) = (x+ y)(x+ ζpy) · · · (x+ ζp−1
p y),

and furthermore, all ideals on the right hand side are pairwise relatively prime. Since this decom-
position is equal to the p-th power of the ideal generated by z, we have that each (x + ζipy) must
be a p-th power of an ideal. (We can see this by considering the decomposition of (z) into prime
ideals p. Since no p is shared between various (x+ ζipy), then in the corresponding decomposition
of (z)p, each pp is a factor of exactly one (x + ζipy).) Explicitly, we can write (x + ζipy) = Ipi
where I1I2 · · · Ip−1 = (z), and each Ipi is principal. This is where we use the regularity of p, and
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hence this is why the proof is limited to primes which do no divide the class number. Since each
Ipi is principal, then in the class group defined as the group of ideals of OK modulo the group of
principal ideals ofOK , we find that Ipi is trivial in the quotient group. However, the class group has
order hK which is not divisible by p, so there cannot exist a nontrivial element that has p-torsion,
i.e. that is annihilated by the exponent p. Thus, Ii must also be trivial in the class group, hence Ii
is also principal. Here, we see that if there was no assumption on the divisibility of hK by p, then
in fact Ii need not be principal.

Since Ii is principal, let αi ∈ OK be its generator. Thus, (x + ζipy) = (αi)
p = (αpi ) hence

x + ζipy = uαpi for some unit u ∈ O×K . Note that we only need to treat the case for i = 1 (as we
know that all nontrivial p-th roots of unity are primitive so based on the choice of ζp we can cycle
through all cases). From Proposition 3.6, we can write u = ζrpv where r is an integer and v = v

is an element of O×
K+ . By Lemma 6, ∃ a rational integer a ∈ Z such that αpi ≡ a mod p. Thus,

x+ ζpy = ζrpvα
p
i ≡ ζ

r
pva mod p. Furthermore, we get

x+ ζp−1
p y = x+ ζ−1

p y = ζ−rp vαi
p ≡ ζ−rp va ≡ ζ−rp va mod p.

We know that x+ζpy ≡ ζrpva ≡ ζ2r
p (x+ζ−1

p y) mod p if and only if x+ζpy−ζ2r
p x−ζ2r−1

p y ≡
0 mod p. If 1, ζp, ζ2r

p , ζ2r−1
p are distinct, then by Lemma 5, p | x, y a contradiction, and we are

done. We know that 1 and ζp must be distinct, and similarly, ζ2r
p and ζ2r−1

p must also be distinct.
Thus, we are left with 3 cases that each hinge on Lemma 5:

1. 1 = ζ2r
p : From this, we get x+ ζpy−x− ζ−1

p y ≡ 0 mod p, i.e. ζpy− ζp−1
p y ≡ 0 mod p,

hence from Lemma 5, p | y, a contradiction.

2. ζp = ζ2r−1
p : This assumption reduces the congruence x+ζpy−ζ2r

p x−ζ2r−1
p y ≡ 0 mod p

to x− ζ2
px ≡ 0 mod p. Hence again from Lemma 5, p | x, a contradiction.

3. 1 = ζ2r−1
p : Note that this is equivalent to the relation ζp = ζ2r

p , which reduces the congru-
ence x + ζpy − ζ2r

p x − ζ2r−1
p y ≡ 0 mod p to (x − y) − ζp(x − y) ≡ 0 mod p, so by

Lemma 5, p | x−y, i.e. x ≡ y mod p, a contradiction to the choice of (x, y, z) made at the
beginning of the proof. This proves that such a counterexample cannot exist, and the proof
is complete. 2

Kummer’s original proof did not end in the same manner. After showing that x+ ζpy = ζrpvα,
Kummer found a congruence similar to x + ζpy − ζ2r

p x − ζ2r−1
p y ≡ 0 mod p, and looked at

coefficients using the binomial expansion of 1 + (ζp − 1)r−1 to show that such an r cannot exist.
However, the main argument Kummer was able to make was in showing that Ii were principal, and
thus (x + ζyp ) where p-th powers of algebraic integers in OK . The final case p | z still rests upon
this main property, and is in fact, a reduction to the proof of the first case of Fermat’s Last Theorem
for regular primes.

2.5 Case II: Completing the Proof
In this section, we finish the proof by assuming p | z. We can make this stronger assumption
instead of p | xyz since for any counterexample (x, y, z) we can assume x, y, and z, are pairwise
coprime, so p only divides one of x, y, or z. We can rearrange and flip signs such that p | z. In this
situation, Lemma 7 proves that the ideals (x + ζipy) have exactly one common factor, the prime
ideal (1− ζp). The proof from this section is the reformulation of Kummer’s original proof for the
second case in modern language. This proof uses the same main argument as the first case, but also
involves the method of infinite descent in which a contradiction is reached by showing that if there
is one “smallest” counterexample, then we can continue to construct “smaller” counterexamples ad
infinitum. We restate the assumptions for this second case of the theorem that will be proved in this
section.
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Theorem 13. Suppose p > 3 is a regular prime. Then

xp + yp = zp, p | z

has no nontrivial solutions in the rational integers, i.e. any integer solution (x, y, z) has the prop-
erty that xyz = 0.

Proof. We prove a stronger statement: There are no nontrivial solutions to xp + yp = U(1 −
ζp)

kpzp0 where x, y, z0 ∈ OK and U ∈ O×K and relatively prime to each other as well as 1 − ζp.
Note that the actual theorem is then just a special case where z is just written out as a product of its
p-part and z0, and x, y, z0 are all integers.

Assume we have a counterexample satisfying the hypotheses. We have the decomposition of
ideals U(1 − ζp)kpzp0 = (x + y)(x + ζpy) · · · (x + ζp−1

p y). By this equality, we know that for
some i, 1− ζp | x+ ζipy, but by the same argument in Lemma 7, this implies that for all i, x+ ζipy

is divisible by 1 − ζp, and furthermore, the quotients
x+ζipy

1−ζp generate ideals which are pairwise
relatively prime, again following from the same argument. We use the following lemma which
allows us to assume that x and y are congruent to rational integers a and b modulo (1− ζp)2.
Lemma 14. For any algebraic integer α ∈ OK\(1− ζp), ∃ l such that ζlpα ≡ a mod (1− ζp)2
where a ∈ Z.

Proof of Lemma. Note that OK = Z[ζp] = Z[1 − ζp], hence one integral basis for OK involves
the powers of (1 − ζp). Therefore, we can find integers a0, a1 ∈ Z such that α ≡ a0 + a1(1 −
ζp) mod (1− ζp)2. Furthermore, since a0 is nonzero outside of (1− ζp), we can find l ∈ Z such
that a1 ≡ a0l mod p. Since ζp = 1 − (1 − ζp), we have ζlp ≡ 1 − l(1 − ζp) mod (1− ζp)2.
Thus,

ζlpα ≡ (1− l(1− ζp))(a0 + a1(1− ζp)) ≡ a0 + (a1 − la0)(1− ζp) ≡ a0 mod (1− ζp)2.

2

Returning the the proof of the theorem, we know that ζlpx and ζjpy are congruent to rational
integers modulo (1− ζp)2. Since we merely need x and y to satisfy the equation U(1− ζp)kpzp0 =

xp + yp, exchanging them for ζlpx and ζjpy does not change anything. We know that x + y ≡
a+b mod (1− ζp)2, where a, b ∈ Z are the integers congruent to x, y respectively. Since 1−ζp |
x + y, then 1 − ζp | a + b, which implies p | a + b since a + b ∈ Z. This, in turn, proves
that (1 − ζp)2 | x + y which tells us that k must be strictly greater than 1. To use the method
of infinite descent, we choose our nontrivial counterexample (x, y, z0) such that k is minimal.
Our contradiction will arise from the construction of a new counterexample (x′, y′, z′0) such that
x′p + y′p = U ′(1− ζp)(k−1)pz′p0 .

From above, we know that (1 − ζp)2 | x + y, and by Lemma 7, we know that the quotients
x+ζipy

1−ζp are relatively prime. Hence all of the extra powers of (1 − ζp) divide x + y only. Since

(1 − ζp)
p−1 | (x + ζpy)(x + ζ2

py) · · · (x + ζp−1
p y) exactly, (i.e. (1 − ζp)

p - (x + ζpy)(x +

ζ2
py) · · · (x+ ζp−1

p y)). We know further that (1− ζp)kp | xp+yp exactly, hence (1− ζp)kp−p−1 |
x + y. Thus, (1 − ζp)

(k−1)p | x+y
1−ζp exactly. This will be crucial when we consider the ideal

generated by the quotients.
Changing Fermat’s equation to ideals, we have

“
(1− ζp)k−1z0

”p
=

p−1Y
i=0

„
x+ ζipy

1− ζp

«
,

where the ideals on the right are relatively prime. As in the first case, by Kummer’s main argument,

we have that each ideal generated by
x+ζipy

1−ζp is a p-th power of a principal ideal, hence ∃ αi ∈ OK
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such that we have the equalities
x+ζipy

1−ζp = uiα
p
i where ui are units in O×K . Furthermore, we know

that {α0, . . . , αp−1} are pairwise relatively prime since their p-th powers are relatively prime.
From the previous argument, we know that (1 − ζp)

k−1 | α0, and we can furthermore write
α0 = (1− ζp)k−1β where β is relatively prime to 1− ζp. From the equalities of x+ ζipy, we use
x+ ζpy and x+ ζp−1

p y = x+ ζ−1
p y as well as the new substitution for x+ y to get

(1− ζp)(k−1)pu0β
p − u1α

p
1 =

(x+ y)− (x+ ζpy)

1− ζp
= y

ζp(1− ζp)(k−1)pu0β
p − ζpu−1α

p
−1 =

(x+ ζ−1
p y)− (x+ y)

ζ−1
p (1− ζp)

= yh
ζp(1− ζp)(k−1)pu0β

p − ζpu−1α
p
−1

i
−
h
(1− ζp)(k−1)pu0β

p − u1α
p
1

i
= 0

If we let U ′ :=
(1+ζp)u0
−u1

and V ′ :=
ζpu−1
−u1

, then U ′ and V ′ are units and the last equation
simplifies to U ′(1 − ζp)(k−1)pβp = αp1 + V ′αp−1. If we consider the equation modulo p, then
since p | (1 − ζp)p−1, we have 0 ≡ αp1 + V ′αp−1 mod p. Recall from Lemma 6, we know that
αp{1,−1} ≡ a{1,−1} mod p where a1, a−1 ∈ Z, thus 0 ≡ a1 + V ′a−1 mod p. (Note that a1 and
a−1 are nonzero as they are relatively prime to α0 which is divisible by p.) However, this implies
that V ′ must in fact be congruent to a rational integermodp. Kummer’s Lemma then allows us to
rewrite V ′ as a p-th power of some unit v ∈ O×K . If we let x′ := α1, y′ := vα−1, and z′0 = β,
then we have U ′(1 − ζp)(k−1)pz′p0 = x′p + y′p, another counterexample which contradicts the
minimality of k. This completes the proof for the second case, and thus Fermat’s Last Theorem
holds for regular primes. 2

2.6 A Modern View
Kummer’s proof of Fermat’s Last Theorem can be reformulated to involve a modern approach that
was attempted for the proof of the entire theorem. For any counterexample at prime p, the goal is to
attach a representation ρ overK = Q(ζp) from the algebraic closure Q(ζp) into a certain extension
L viewed as vector spaces over K. In particular, the extension L/K would be equipped with
Galois group isomorphic to (Z/pZ)×. Note that this gives rise to a map Gal(Q(ζp)/Q(ζp)) →
Gal(L/K) ↪→ Fp. We do this by considering a different interpretation of regularity involving
class field theory. Global class field theory tells us that there exists an extension of K = Q(ζp)
known as the Hilbert class field HK with the defining property that Gal(HK/K) is isomorphic
to the ideal class group of K. Furthermore, we know that HK is totally unramified, i.e. none of
the prime ideals in K have a decomposition in HK with repeated factors. Galois theory explains
the extensions that lie between K and HK in relation to Gal(HK/K), i.e. in relation to the
structure of the ideal class group of K. For example, if p does not divide hK , there is no p-
torsion in the ideal class group, i.e. there is definitely no extension of K of degree p that is in
HK . In particular, there does not exist a cyclic extension of degree p which is totally unramified.
Hence, to every counterexample at a prime p, we construct a totally unramified extension L over
Q(ζp) with degree p in order to come to a contradiction. In terms of representations, we note that
Gal(L/Q(ζp)) ∼= (Z/pZ)×, so by adding the zero automorphism we get Fp. Facts from infinite
Galois theory and Kummer theory allow us to form the representation ρ from the full Galois group
of Q(ζp) to Fp. As expected, such ρ do not exist at regular primes p. The following proof is based
on [Pa]. For this proof, we need some more facts, the most important of which come from class
field theory. As usual, let K = Q(ζp), and we take p to be a prime greater than 3.

Proposition 15. (1) If u is a unit of OK such that it is congruent to a rational integer modulo p
and not a p-th power in OK , then the field extension K(u1/p)/K is a cyclic extension of order p
that has the property of being totally unramified. (This holds for any p-th root of u.)
(2) If I is an ideal of OK such that Ip is principal, but I is not, then there is a cyclic extension
over K of order p that has the property of being totally unramified.
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It is easy to see that the hypotheses in the above proposition never hold for primes which are
regular (this follows from the definition and Kummer’s Lemma), hence one can understand that at
such regular primes, a cyclic extension would never exist.

Theorem 16. If there exists x, y, z ∈ Z such that xp + yp = zp, then we can produce a cyclic
extension L of K = Q(ζp) of order p which has the property of being totally unramified.

Proof. As expected, we have two cases, p - xyz and p | z. Furthermore, we assume as usual that
x, y, and z are relatively prime. In this proof, we will reference the original proof from the previous
sections, using the exact same notation.
Case 1. Assume p - xyz. As in the original proof, we rearrange and flip signs such that x 6≡ y mod
p. We use the usual decomposition into relatively prime ideals (z)p = (x+ y)(x+ ζpy) · · · (x+
ζp−1
p y) so that we can write (x + ζip) = Ipi for all i ∈ {0, . . . , p − 1}. Here, we don’t have the

assumption that p is regular. However, from the argument of the original proof, we know that if I is
principal, then following the same argument, we obtain the congruence x+ζpy−ζ2r

p x−ζ2r−1
p y ≡

0 mod p and eventually get contradictions to p - xyz or x 6≡ y mod p using Lemma 7. Thus, if
x, y, and z exist, it must be that I must be principal, hence by Proposition 6.1, there exists an
extension of K with the needed properties.
Case 2. Assume p | z. Here, we generalize and consider the equation xp + yp = U(1− ζp)kpzp0
where x, y, z0 are elements of OK such that they are relatively prime to each other as well as
1 − ζp, and we consider a solution such that k is minimal. We note that in the decomposition
U(1 − ζp)kpzp0 = (x + y)(x + ζpy) · · · (x + ζp−1

p y), each of factors x + ζp−1
p y is divisible by

1 − ζp and we can change x and y accordingly such that (1 − ζp)k(p−1)+1 | x + y. It follows

that
`
(1− ζp)k−1z0

´p
=
Qp−1
i=0

„
x+ζipy

1−ζp

«
, and the ideals generated by

x+ζipy

1−ζp are p-th power of

ideals Ii ∈ OK . Here since we do not have the assumption that p is regular, we do not know
whether or not these ideals are principal. Nevertheless, if these ideals are principal, in particular, if
I0, I1, and I−1 = Ip−1 are principal, then we have the following three equations

x+ y = (1− ζp)kp+1u0β
p

x+ ζpy = (1− ζp)u1α
p
1

x+ ζ−1
p y = (1− ζp)u−1α

p
−1

where β, α1, α−1 are elements of OK and u0, u1, u−1 are units in O×K . Following the same
argument, we arrive at an equation U ′(1 − ζp)

(k−1)pβp = αp1 + V αp−1 where U ′ and V ′ are
units of K. Looking at this equation modulo p, we arrive at the conclusion that V ′ is congruent
to an integer modulo p, so we either have the case that V ′ is not a p-th power producing a cyclic
extension L = K(V ′1/p) from Proposition 6.1 satisfying all needed properties or there exists
v ∈ O×K such that V ′ = vp. If we let x′ := α1, y′ := vα−1, and z′0 := β, then we have
U ′(1 − ζp)(k−1)pz′p0 = x′p + y′p, a contradiction to the minimality of k. Hence, we see that one
of I1, I0, or I−1 must not be principal, and by Proposition 6.1, we can produce the extension L
over K with the needed properties. 2

From the existence of such an L, we can go further to produce a representation ρ : Gal(K/K)

→ Gal(L/K) ∼= Fp. From Galois theory, we know that Gal(K/K) can be expressed as an
inverse limit of the Galois groups of its finite Galois subextensions, including L. In particular, we
have a canonical homomorphism Gal(K/K) → Gal(K/K)/Gal(K/L) ∼= Gal(L/K), giving
rise to the exact representation ρ that we need.

For the complete the proof for Fermat’s Last Theorem, Andrew Wiles attempted to associate
to every counterexample (x, y, z, p), a representation ρ : Gal(Q/Q) → GLn(Fp) such that the
representation was unramified away from p and had “nice” ramification at p. Wiles immediately
followed by proving no such representations exist, contradicting the existence of such counterex-
amples ([Pa]). This is comparable to the strategy used here to prove Fermat’s Last Theorem for
regular primes.
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2.7 Generalizing the Second Case
The method used in the second case of Kummer’s proof can be generalized to prove Fermat’s Last
Theorem for more than just regular primes. The basic argument stays the same, but we instead
consider the generalized equation

xp + yp = uλmzp,

where p is an odd prime, λ = (1 − ζp)2, x, y, z,∈ Z[λ] such that they are relatively prime with
each other and λ, u ∈ Z[λ] ∩ R, and m ≥ p(p−1)

2
. We want to show that this equation has no

solutions. We must make two assumptions on our choice of p that loosely generalize the property of
regularity. The first is that p - hK+ , i.e. pmust not divide the class number ofK+ = Q(ζp+ζ−1

p ).
The second assumption is that certain units η arising within the argument can be expressed as a
p-th power of a unit in K+. We will state this assumption more accurately when these units show
up. For this argument, we will need a couple of facts. The proof for the following lemma can be
found in [Wa].

Lemma 17. (1) For any α ∈ OK such that α ≡ 1 mod (1− ζp)p, the extension K(α1/p)/K is
unramified at (1− ζp).
(2) Assume p - hK+ . Let α ∈ OK be such that α = α−1 and K(α1/p)/K is unramified. Then
there exists β ∈ K such that α = βp.

Main Argument. We are ready for the main argument. We will only present a sketch of the proof.
The full detailed proof can be found in [Wa].

Assume there exists a solution to the equation uλmzp = xp + yp satisfying the properties
described above. We can decompose the right hand side in K to get uλmzp = (x + y)(x +
ζpy) · · · (x + ζp−1

p y). The only common factor of any two (x + ζipy) and (x + ζjpy) for i 6= j is
the prime ideal (1 − ζp). Furthermore, we know that (1 − ζp)2 = (λ) | (x + y), so we have the
equality

(x+ y)

„
x+ ζy
1− ζp

«„
x+ ζ2

y

1− ζp

«
· · ·
„
x+ ζp−1

y

1− ζp

«
= vλm−(p−1)/2zp,

where v is a unit and the algebraic integers on the right generate ideals which are pairwise relative

prime, so in particular, since 1− ζp | x+ y, 1− ζp - x+ζ
i
py

1−ζp for any i ∈ {1, . . . , p− 1}. It follows

that there exists ideals Ii such that Ip0(λ)m−(p−1)/2 = (x + y) and Ipi =
x+ζipy

1−ζp for all other i.
Note that Ip−i = I−i is the complex conjugate of Ii.

If we assume that p - hK+ , then I0 is principal in Z[λ]. (Note that it is okay to think of I0 in
Z[λ] since (1 − ζp) - I0.) Furthermore, since x + y and λ are elements of R, the generator α0 of
I0 is also real, so we get x+ y = u0λ

m−(p−1)/2αp0 where u0 is a unit which is also real. For any
i 6= 0, define

ai = −ζ−ip
x+ ζipy

x+ ζ−ip y
≡ 1 mod (1− ζp)2m−p,

so in particular ai ≡ 1 mod (1− ζp)p. Note that the principal ideal generated by ai can be
decomposed as a p-th power of (Ii/I−i). Thus, from Lemma 7.1, we not only know that the
extension K(a

1/p
i )/K is unramified at (1− ζp), we furthermore know that it is totally unramified.

Additionally, from the second part of Lemma 7.1, ai = βpi where βi ∈ K. This allows for us to

find αi ∈ Z[λ] such that
x+ζipy

1−ζp = uiα
p
i where ui is a real unit. Note that (αi)

p = αp−i, so up to a
root of unity, αi = α−i.

From the equalities x+ ζipy = (1− ζp)uiαpi and x+ ζ−ip y = (1− ζ−ip )u−iαi
p as well as the

formula for x+ y, we get

−xy = u2
i (αiαi)− u2

0λ
2m−p+1α2p

0 λ
−1
a .
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For j such that j 6= 0 and i 6≡ ±j mod p, a similar equality holds. Combining the two gives us

η2(αiαi)
p + (−αbαb)p = δλ2m−p(α2

0)p,

where η = ui/uj and δ is a real unit. Note that η defined here is the one needed as a p-th power of
a unit from K+ in the second assumption. This allows us to define x1 = η2/pαaαa, y1 = −αbαb,
and z1 = α2

0 so that the above equations turn into xp1 + yp1 = δλ2m−pzp1 . It is easy to show
that x1, y1, z1 are pairwise relatively prime with λ. Again, we can use the method of infinite
descent to produce a contradiction. If we assume that (z) has the smallest number of distinct prime
ideal factors in its decomposition, we in fact know that (z) = I0I1 · · · Ip−1 where Ii and Ij are
relatively prime for i 6= j. However, z1 = α2

0 and α0 is the generator of I0, hence (z1) = I2
0 so

I1, . . . , Ip−1 must be trivial. However, this implies that each
x+ζipy

1−ζp is a unit for i 6= 0. With some

manipulation, we arrive at the fact that either x+y = 0 or ζ2
p = 1, both contradictions. Altogether,

we see that such a solution cannot exist. 2
The above argument proves the second case of Fermat’s Last Theorem for regular primes as

well as other cases, although it remains to show why the two assumptions are satisfied by the
property of regularity. Proofs demonstrating how to go about satisfying the two assumptions for
regular primes as well as other cases can be found in [Wa].
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Abstract
Inspired by geometric intuition, the Braid Group admits a neat algebraic structure with complexity
sufficient to suggest cryptographic applications. We investigate these applications and present an
algorithm for normalizing words in the braid group. Such normalization is critical to a realistic
implementation of a computational system based on braids. We also present a simple cryptographic
protocol based on the braid group.

3.1 Introduction
The problem of transmitting a secure message over an insecure channel is nearly as old as time
itself. However, it has taken on new significance in the last 50 years as the modern global financial
infrastructure depends heavily on secure communication. For generations, the approach to secure
communication remained basically unchanged: prearrange the transfer of some shared piece of in-
formation (the secret) and use it to encrypt a message. Although the algorithms used for encrypting
the message changed with time, the technique itself did not.

In the 1970s, James Ellis, Clifford Cocks, and Malcolm Williamson discovered the beginnings
of what came to be called public-key or asymmetric cryptography[El]. Asymmetric cryptography
no longer required the pre-exchange of a secret piece of information. Instead, a piece of public
information could be used to encrypt a message that could only be decrypted by a different, private,
piece of information. The public-key technique that Ellis, Cocks, and Williamson discovered relied
on the difficulty of factoring large prime numbers. Although this problem is still considered difficult
in classical terms, there exist quantum algorithms which can solve the problem much faster (in fact,
in polynomial time)[NC].

Although no one has yet built a useful quantum computer, the possibility worries most security
theorists. As a result, there has been a great deal of research into other, potentially more secure,
public-key cryptography systems. One such system, which drew a great deal of initial interest,
relies on the Artin Braid Group. Although later research has revealed additional structure in the
braid group which may limit its cryptographic potential, there still remain potentially interesting
cryptographic applications of the group[De]. Regardless, the mathematics necessary to successfully
implement a braid based cryptographic system is interesting in its own right.

In this paper, we describe the braid group geometrically and algebraically, discuss in detail
the mathematics required to implement the braid group algebraically (specifically, we discuss the
word problem and its solution: left weighted canonical form), and conclude by describing a simple
cryptographic system which relies on braids.

3.2 The Braid Group
The Artin Braid Group is an infinite non-commutative group which in some sense generalizes the
classical symmetric group by encoding additional topological information with each permutation.
The group can be defined both algebraically and geometrically. The algebraic definition is most

†Grant Dasher ’09 is a senior Mathematics and Computer Science concentrator at Harvard. He is interested
in using mathematics to reason about the correctness of software and to design new programming languages.
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useful for computational purposes, but we begin with the geometric definition because it best mo-
tivates the intuition behind the key structure theorems.

Definition 1. Let σ ∈ Sn be a permutation. An n-stranded braid is a set of n non-intersecting
smooth paths γi such that:

• γi(0) = (i, 0, 1) and γi(1) = (σ(i), 0, 0).

• For each j ∈ [0, 1], each path intersects each plane z = j exactly once.

It is natural to consider equivalence classes of braids. We say that two braids A0 and A1 are
equal if they are isotopic as braids, that is, if there exists a continuous family of braids {At}t∈(0,1)

carrying A0 into A1.
The set of equivalence classes of n-stranded braids, with the natural operation of concatenation

(and rescaling), forms a group. It is clear that, up to isotopy, this operation is associative and
invertible. It is also clear that the identity braid is the braid represented by n vertical parallel lines.
We will refer to the braid group on n strands as Bn. We denote the identity element of this group
by e. It is the trivial braid consistent of parallel straight lines.

The Braid Group is generated by the n− 1 elementary braids shown in Figure 3.1.

i i + 1

Figure 3.1: The generators σi

It is clear that after a bit of isotopy, any braid can be written as a word in these generators
(and their inverses). Furthermore, a little thought will reveal these generators satisfy the following
relations.

1. σiσj = σjσi, for |j − i| ≥ 2 (far commutivity)

2. σiσi+1σi = σi+1σiσi+1 (braid relation)

It turns out that these two relations are the only relations satisfied by elements of the braid
group (in addition to the trivial relations implied by the group axioms). A combinatorial proof of
this can be found in [Ma]. A much more elegant (but more sophisticated) proof is in [Ha]. As a
result, we have the following

Theorem 2. Bm admits the following presentation:

〈σ1, . . . σn−1 |σiσj = σjσi for |i− j| ≥ 2 ; σiσi+1σi = σi+1σiσi+1〉

3.3 Algebraic Implementation and Braid Normal Form
In order to implement braids on a computer, we need a representation. A standard representation
would be an algebraic braid word, that is a formal list of symbols σi. Unfortunately, braid words
are not unique. For example, in B4, the words σ1σ3σ2σ1 and σ3σ2σ1σ2 are equivalent (it is
clear that a simple application of the relations will transform one into the other). The problem of
determining whether two words represent the same group element is known to group theorists as
the word problem. In general, the problem is undecidable for an arbitrary group. However, there
is a viable solution in the braid group. To solve the word problem, we must select a distinguished
word from each equivalence class (called the normal form or canonical form of the braid). If we
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have an algorithm for transforming an arbitrary word into its normal representative, this yields a
solution to the word problem. Luckily, in the case of the braid group, a normal form and associated
algorithm do exist.

In order to define braid normal form, we must first more carefully study the structure of the
braid group. We limit our focus to the semi-group B+

n of positive braids, that is braids where only
positive powers of the generators appear in any braid word. We shall see that this suffices, for we
can uniquely express all braid words in terms of positive braid words. It is true, although we shall
not prove it, that B+

n can be considered as an abstract semi-group on exactly the same generators
and relations which define Bn and that this semi-group embeds into Bn. The proof of this fact
basically amounts to showing B+

n is left cancelable, right cancelable, and right reversible. A full
proof can be found in [Bi]. Various normal forms can be defined for the braid group, all of which
employ the same basic ideas. We will closely follow the left-weighed canonical form defined in
[EM].

There is a natural homomorphism wt : Bn → Z defined by wt(σi) = 1. When restricted to
B+
n , this homomorphism coincides with the length of the braid word.

We can also define an anti-automoprhism rev : Bn → Bn by rev(σi) = σi. That is, rev is
the unique map such that rev(σi) = σi and rev(AB) = rev(B) rev(A) for all A,B ∈ Bn. We
can interpret this map geometrically as reading the braid word ’bottom up’ instead of ’top down’
as one normally would.

There is also a natural automorphism τ : Bn → Bn given by τ(σi) = σn−i which can
be realized geometrically as ‘turning over’ a braid. τ is an involution and in fact can be realized
explicitly as conjugation by a particular braid.

Definition 3. The fundamental braid ∆n is defined inductively by:

∆n = ∆n−1σn−1σn−2 . . . σ1

and ∆1 = σ1.

Geometrically, we can interpret this braid as the braid that ‘folds’ the strings over themselves.
Figure 3.2 shows an example in the case of n = 4. When there is no danger of confusion, we will
write ∆ for ∆n.

Figure 3.2: The fundamental braid ∆4

Proposition 4. Let A ∈ Bn be a braid. Then τ(A) = ∆nA∆−1
n .

Proof. It suffices to show that ∆nσi = σn−i∆n. We omit the details, but this follows from a
straightforward application of the relations and the inductive definition of ∆n. 2

We introduce a partial order ≤ on Bn as follows:
Remark. For A,B ∈ Bn, say A ≤ B if there exists C1, C2 ∈ B+

n such that B = C1AC2.
It is clear that B ∈ B+

n ⇐⇒ e ≤ B and A ≤ B ⇐⇒ B−1 ≤ A−1. It is also clear from
the definition of ∆ that each generator satisfies e ≤ σi ≤ ∆. The partial order notation greatly
simplifies the statement of the key algebraic relationships which lead to braid normal form. The
key algebraic lemma is the following.
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Lemma 5. If A ≤ ∆s, then ∆s = D1A = AD2 for some D1, D2 ∈ B+
n . Similarly, if ∆r ≤ A,

then A = E1∆r = ∆rE2 for some E1, E2 ∈ B+
n .

Proof. Since τ is simply conjugation by ∆, it is clear that ∆sC2 = τs(C2)∆s. To get the first
statement from this fact, write ∆s = C1AC2 with C1, C2 ∈ B+

n . Then ∆s = C1τ
s(C2)A, and

similarly, ∆s = Aτs(C1)C2 since τ2 = 1. To get the second statement, write A = C1∆rC2.
We have τr(A) = τr(C1∆rC2) = τr(C1)τr(∆r)τr(C2) = τr(C1)∆rτr(C2) = ∆rC1τ

r(c2).
The other equality is similar. 2

As corollaries, we find that:

Corollary 6. If ∆r1 ≤ B ≤ ∆s1 and ∆r1 ≤ B ≤ ∆s2 , then

∆r1+s1 ≤ BC ≤ ∆s1+s2 .

Corollary 7. For each braid B, there exist r, s ∈ Z such that ∆r ≤ B ≤ ∆s.

Proof. Write B as a word in the generators σ±1
i and use Corollary 6 together with fact that e ≤

σi ≤ ∆ and ∆−1 ≤ σ−1
i ≤ e. 2

Remark. For A ∈ Bn, we say that A ∈ [r, s] if ∆r ≤ A ≤ ∆s.
We can now begin to construct the braid normal form. Before we state the main theorem, we

need one more definition.

Definition 8. The starting set, S(P ) ⊂ {1, . . . , n− 1}, of a positive braid P is the set

S(P ) = {i |P = σiPi, Pi ≥ e}.

Similarly, the finishing set is

F (P ) = {i |P = Piσi, Pi ≥ e}.

We can now state the main theorem, which we will prove over the remainder of this section.

Theorem 9 (Main Theorem). Let P be a positive braid. Then there is a unique expression P =
A1A2 . . . Ak with Ai ∈ [0, 1], Ak 6= e, and S(Ai+1) ⊂ F (Ai) for each i.

It is also clear now why it suffices to consider positive braids. For, given an arbitrary braid B,
we can find a maximal r such that ∆r ≤ B and hence writeB = ∆rP , where P is a positive braid.
If we can find a unique normal form for P , then the unique normal form for B follows simply as
the power r together with the normal form for P .

Definition 10. A positive factorization P = AB, withA,B ≥ e is called left-weighted if S(B) ⊂
F (A). Similarly, it is called right-weighted if S(B) ⊃ F (A).

We will develop the theory of left-weighted factorizations, although one can equally well de-
velop a theory of right-weighted factorizations with the same basic results. The key to proving the
main theorem is the following

Lemma 11 (Main Lemma). Every positive braid P has a unique left-weighted factorization P =
A1P1 with A1 ∈ [0, 1]. Such a factorization is universal in the sense that every other positive
factorization P = AB, with A ∈ [0, 1], satisfies A1 = AQ for some positive braid Q.

In order to prove Lemma 11, we need to get a better handle on the set [0, 1]. To do so, we
exploit more directly the geometry of the braid group.

Definition 12. A positive braid A is called a positive permutation braid if it can be drawn as a
geometric braid in which every pair of strings crosses at most once. In this case, we say A ∈ S+

n .

The choice of terminology is motivated by the following Proposition, which establishes a bi-
jective correspondence between S+

n and Sn.

Proposition 13. If A1, A2 ∈ S+
n induce the same permutation on their strings, then A1 = A2.

For any π ∈ Sn, there exists a braid Aπ ∈ S+
n which induces the permutation π on its strings.
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Proof (Sketch). A full proof is available in [EM]. Suppose that A1, A2 ∈ S+
n induce the same

permutation on their strings. By definition, two strings i, j have at most one crossing point in
which string j passes in front of string i if i < j. Hence, we can realize the braid so that each string
lies in a vertical plane, with the left most (at the top of the braid) string at the furthest back level and
each other string at successively higher levels. Because A1 and A2 induce the same permutation
on their strings, we can isotope A1 into A2 keeping each string in its plane, which shows that
A1 = A2 as braids.

Now, suppose we have a permutation π. We need to find a braid Aπ that induces the permu-
tation π in which each pair of strings crosses at most once. Select n points on the top and bottom
of a rectangle and connected them with n lines joining the i-th point at the top with the π(i)-th
point at the bottom such that two lines cross at most once. It is clear we can always do this for a
permutation. Now, convert this diagram into a braid by turning each crossing into a positive braid
crossing. See Figure 3.3. 2

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Figure 3.3: Diagram associated to (1324) becomes a braid in S+
n

The following provides a usefully criterion for computing the starting set of a permutation
braid.

Lemma 14. For Aπ ∈ S+
n , the following are equivalent:

1. i ∈ S(Aπ),

2. Strings i and i+ 1 cross in Aπ ,

3. π(i+ 1) < π(i).

Proof. (2) and (3) are equivalent since strings cross at most once. If we have Aπ = σiA
′ for a

positive A′ (that is to say, if i ∈ S(Aπ)), then (2) follows since the strings i, i + 1 cross in σi.
Conversely, if strings i and i + 1 cross in Aπ , then we can draw a diagram of this permutation in
which this crossing happens first. Converting this diagram into a braid yields the other implication.

2

Corollary 15. Let A ∈ S+
n . Then σiA ∈ S+

n ⇐⇒ i 6∈ S(A).

Proof. The strings i and i+ 1 of σiA cross once if i 6∈ S(A) and twice otherwise. All other pairs
cross at most once. The result then follows directly from Lemma 14 2

A similar result holds for the finishing set by applying Corollary 15 to revA. As a result of our
geometric detour, we can now establish the following

Proposition 16. The subsets [0, 1] and S+
n of Bn are the same.

Proof. Recall that [0, 1] simply means the set of all braids B such that e ≤ B ≤ ∆. Clearly,
∆ ∈ S+

n since every pair of strings crosses exactly once. Further, if P = AB ∈ S+
n where

A,B ≥ e, then any pair of strings in A crosses at most once in P and hence crosses at most once
in A. So A ∈ S+

n . Similarly, B ∈ S+
n . Now, by Lemma 5, for every braid A ∈ [0, 1], there exists

a positive braid B such that AB = ∆, hence A ∈ S+
n .
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Conversely, say that A = Aπ ∈ S+
n . Let δ ∈ Sn be the permutation associated to ∆ and let

ρ = π−1δ. Then AπAρ is a positive braid with permutation πρ = δ. It is enough to show that
AπAρ ∈ S+

n , for then, by Proposition 13, AπAρ = Aδ = ∆. It follows that since e ≤ AπAρ =
∆, Aπ ≤ ∆, so Aπ ∈ [0, 1]. Now, any pair of strings in AπAρ can cross at most twice since
Aπ, Aρ ∈ S+

n . But, the permutation associated to AπAρ is δ so each pair of strings crosses an odd
number of times and so crosses exactly once. To see that any braid with permutation δ need have
each strand cross an odd number of times, notice that δ(i) = n − i, which induces one crossing
of each pair of strands. All other crossings must come in pairs, so the total number of crossings is
odd. It follows that AπAρ ∈ S+

n . 2
The proof of the Main Lemma relies on the following technical result which we shall not prove.

It was first proved by Garside and is referenced in [EM].

Lemma 17 (Garside’s Lemma). Let P = σiP1 = σjP2 where P1, P2 are positive braids. Then
there exists a positive braid P3 such that P = (σi ∗ σj)P3, where

σi ∗ σj =

8><>:
σi i = j

σiσj |i− j| ≥ 2

σiσjσi |i− j| = 1

With this machinery in place, we can finally turn to the proof of Lemma 11.
Proof of Lemma 11 (Main Lemma). We first show the existence of a left-weighted factorization
P = A1P1 with A1 ∈ S+

n . Consider all positive factorizations P = AB, with A ∈ S+
n . Such

factorizations surely exist as each generator σi ∈ S+
n . Choose one in which wtA is maximal. If

S(B) 6⊂ F (A), then choose i ∈ S(B)− F (A). By Corollary 15, A′ = Aσi ∈ S+
n . We can write

B = σiB
′, withB′ positive. This yields a new positive factorization P = A′B′ withA′ ∈ S+

n and
wtA′ > wtA, which is a contradiction. Hence, the selected factorization must be left-weighted.
Write this factorization as P = A1P1.

Now we turn to the universality. In partiuclar, we will show that given any other positive
factorization P = AB with A ∈ S+

n , we have A1 = AQ for some positive braid Q. Suppose
not. Then there exists factorizations P = CσiB

′ with Cσi ∈ S+
n and such that C ∈ Sn+ is

a subfactor of A1 but Cσi is not. Choose such a factorization with maximal weight wtC and
write A1 = CQ. Now CσiB

′ is a positive factorization of P , so by the maximality of wtA1, we
have wtA1 ≥ wtCσi > wtC. Hence Q 6= e so we can choose j ∈ S(Q). Then Cσj ≤ A1,
so Cσj ∈ S+

n (since A1 ∈ S+
n and S+

n = [0, 1]). This gives a factorization as P = CσjB
′′.

By Garside’s lemma applied to B = σiB
′ = σjB

′′, we can find a positive braid B′′′ so that
P = C(σi ∗ σj)B′′′.

Since Cσj ∈ S+
n , σj 6∈ F (C) by Corollary 15. Similarly, σi 6∈ F (C). An extension of the

proof of Corollary 15 to the case of σi ∗ σj shows that C(σi ∗ σj) ∈ S+
n . We omit the technical

details. As a consequence, we have a factorization of P with a larger subfactor (at least including
Cσj) in common with A1, while C(σi ∗ σj) itself is not a subfactor of A1 (by choice of σi). This
contradicts the maximality of wtC.

It follows that the left-weighted factorization P = A1P1 is unique. For, if P = AB is another
left-weighted factorization, then we have A1 = AQ for a positive braid Q. If Q 6= e, choose
i ∈ S(Q). By Corollary 15, i 6∈ F (A) since Aσi ≤ A1 ∈ S+

n . However, B = QP1, so i ∈ S(B)
and the resulting factorization is not left-weighted, which yields a contradiction. Hence Q = e and
A = A1. 2

Corollary 18. Let P be a positive braid with left-weighted factorization P = A1P1 andA1 ∈ S+
n .

Then S(A1) = S(P ).

Proof. Clearly S(A1) ⊂ S(P ). On the other hand, let i ∈ S(P ). Then P = σiB for some
positive braid P. By the main lemma, we have A1 = σiQ for some positive braid Q. Hence
i ∈ S(A1). 2

The main theorem is an easy corollary of the main lemma. Recall that we seek to prove the
following
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Theorem 19 (Main Theorem). Let P be a positive braid. Then there is a unique expression P =
A1A2 . . . Ak with Ai ∈ [0, 1], Ak 6= e, and S(Ai+1) ⊂ F (Ai) for each i.

Proof. Let P = P0 and let P0 = A1P1 be the unique left-weighted factorization with A1 ∈ [0, 1].
By induction, factorize Pi = Ai+1Pi+1 with S(Pi+1) ⊂ F (Ai). By Corollary 18, S(Pi+1) =
S(Ai+1), so S(Ai+1) ⊂ F (Ai). It is clear this this process terminates since the weight of Pi is
strictly less than the weight of Pi−1, while the total weight of P is finite. 2

3.4 An Algorithm for Braid Normal Form
Suppose that we have a braid word B. We seek to write B = ∆rP ′ where P ′ is a positive braid,
but P ′ 6≥ ∆ and to compute the left-weighted canonical form of P ′ as a sequence of permutations.
Again, we closely follow the discussion of [EM].

In order to start the algorithm, we need to write the braid in the form ∆rP ′. We can do this
by rewriting each σ−1

i as ∆−1σ∗i , where σ∗i ∈ [0, 1] and then collect factors of ∆ to the left by
repeatedly using A∆ = ∆τ(A). We also need to write P ′ as a sequence of permutation braids,
which is easy since each generator σi is itself a permutation braid.

Now, suppose that B = ∆rP ′ and P ′ is the product B1 . . . Bk of positive permutation braids.
Find the sets F (Bi) and S(Bi). If S(Bi+1) ⊂ F (Bi) for each i, then we have found the canonical
form by the uniqueness of the Main Theorem (except for some final factors of e, which can be
ignored). Incorporate any initial factors of ∆ into the power r and return r and the sequence of
permutations defining the permutation braids. If not, then find the first i such that S(Bi+1) 6⊂
F (Bi) and choose j ∈ S(Bi+1) so that j 6∈ F (Bi). Consider the braids Ci = Biσj and Ci+1 =
σ−1
j Bi+1. Ci ∈ S+

n by Corollary 15. Ci+1 = σ−1
j Bi+1 ∈ S+

n since e ≤ σ−1
j Bi+1 ≤ Bi+1

(j ∈ S(Bi+1)). Replace Bi, Bi+1 with Ci, Ci+1 and iterate the process. This completes the
algorithm.

The algorithm terminates because at each stage, the weight of the permutation subwords in-
creases and there are a finite number of words of a given total weight.

3.5 Applications: Braids and Diffie-Hellman Key Exchange
Given a braid normal form, we can implement the braid group on a computer by representing
braids as normalized words. We can implement the group operation simply as concatenation of
words followed by normalization. This enables us to easily determine braid equivalence and hence
implement cryptographic algorithms based on braids. One example is a key exchange scheme that
is very similar to the familiar Diffie-Hellman scheme.

The goal is to securely construct a shared piece of information known only by two parties
(traditionally named Alice and Bob). This piece of information can then be used, in conjunction
with other cryptographic systems, to securely transmit messages between the two parties.

Let LBn denote the subgroup of Bn generated by σ1, . . . , σm, where m = bn/2c. Similarly,
let UBn denote the subgroup generated by σm+1, . . . , σn−1. It is clear (either geometrically or
by the far commutativity relation) that each braid in LBn commutes with every braid in UBn.
Suppose that a public braid p is known by both parties (and potential adversaries). Further suppose
that A has a secret braid r ∈ LBn and B has a secret braid s ∈ UBn. Carry out the following
sequence of exchanges:

1. A computes rpr−1 and sends it to B

2. B computes sps−1 and sends it to A

3. A computes τA = r(sps−1)r−1

4. B computes τB = s(rpr−1)s−1

Since r and s commute, we have a shared secret τ = τA = τB . In order for an adversary to
determine τ , they need to solve a variant of the conjugator search problem, which is believed to be
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difficult given a suitable choice of braid p and group size n. The conjugator search problem asks,
given braids A,B, to find a braid Q such that A = QBQ−1. The problem here is a variant on this
problem since the adversary knows two braids conjugate to p, namely rpr−1 and sps−1 and also
knows that r ∈ LBn (resp. s ∈ UBn).

Initial research suggested that this problem should be very difficult, however subsequent efforts
have shown the Braid Group has more internal structure than initially suspected and that, hence, it
may be possible to some the conjugator search problem. More details about the difficulty of these
problems and various other cryptographic systems employing braids can be found in [De].

3.6 Conclusion
Although research interest in the braid group for cryptographic purposes has slowed in recent years,
the group may hold cryptographic promise. The traditional assumption is that a randomly chosen
braid in a group on the order of B80 is ideal for a public-key. Recent research has shown this not to
be the case [De]. Still, it may be possible to construct a secure system by choosing suitable braids
p, r, s. More research is necessary to determine whether such a system can be made secure.

Even if the braid group turns out not to yield a secure cryptography system, the group and
its word problem are interesting from a strictly mathematical perspective. The unique blend of
topology and algebra employed in analyzing braids gives the subject a refreshing and beautiful
flavor.
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Abstract
We explore an intimate connection between Young tableaux and representations of the symmetric
group. We describe the construction of Specht modules which are irreducible representations of
Sn, and also highlight some interesting results such as the branching rule and Young’s rule. Some
knowledge of basic representation theory is assumed.

4.1 Introduction
In this article, we explore a connection between representations of the symmetric group Sn and
combinatorial objects called Young tableaux. We define Young tableaux in Section 4.2, but for
now, it suffices to say that they are fillings of a certain configuration of boxes with entries from
{1, 2, . . . , n}, an example of which is shown below.

1 2 4
3 5 6
7 8
9

So how are representations of Sn related to Young tableau? It turns out that there is a very elegant
description of irreducible representations of Sn through Young tableaux. Let us have a glimpse of
the results. Recall that there are three irreducible representations of S3. It turns out that they can
be described using the set of Young diagrams with three boxes. The correspondence is illustrated
below.

trivial representation sign representation standard representation

It is true in general that the irreducible representations of Sn can be described using Young diagrams
of n boxes! Furthermore, we can describe a basis of each irreducible representation using standard
Young tableaux, which are numberings of the boxes of a Young diagram with 1, 2, . . . , n such that
the rows and columns are all increasing. For instance, the bases of the standard representation of
S3 correspond to the following two standard Young tableaux:

1 2
3

1 3
2

†Yufei Zhao, Massachusetts Institute of Technology ’10, is a mathematics and computer science major. His
favorite mathematical area is combinatorics, but he also enjoys algebra and number theory. He is regularly
involved with the training of the Canadian team for the International Math Olympiad.
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The dimension of the irreducible representations can be easily computed from its Young diagram
through a result known as the hook-length formula, as we explain in Section 4.4.

There are many other surprising connections between Young tableaux and representations of
Sn, one of which is the following. Suppose we have an irreducible representation in Sn and we
want to find its induced representation in Sn+1. It turns out that the induced representation is
simply the direct sum of all the representations corresponding to the Young diagrams obtained by
adding a new square to the original Young diagram! For instance, the induced representation of the
standard representation from S3 to S4 is simply

IndS4
S3

= ⊕ ⊕ .

Similarly, the restricted representation can be found by removing a square from the Young diagram:

ResS2 = ⊕ .

In this paper, we describe the connection between Young tableaux and representations of Sn.
The goal is to attract readers to the subject by showing a selection of very elegant and surprising
results. Most proofs are omitted, but those who are interested may find them in [Fu], [FH], or
[Sa]. We assume familiarity with the basics of group representations, including irreducible repre-
sentations and characters. Induced representations are used in Section 4.5. For references on group
representations, see [FH], [Sa], or [Se].

In Section 4.2, we introduce Young diagrams and Young tableaux. In Section 4.3, we introduce
tabloids and use them to construct a representation of Sn known as the permutation module Mλ.
However, permutation modules are generally reducible. In Section 4.4, we construct irreducible
representations of Sn known as Specht modules Sλ. Specht modules Sλ correspond bijectively
to Young diagrams λ and they form a complete list of irreducible representations. In Section 4.5,
we discuss the Young lattice and the branching rule, which are used to determine the induced and
restricted representations of Sλ. Finally, in Section 4.6, we introduce Kostka numbers and state a
result concerning the decomposition of permutation modules into the irreducible Specht modules.

4.2 Young Tableaux
First we need to settle some definitions and notations regarding partitions and Young diagrams.

Definition 1. A partition of a positive integer n is a sequence of positive integers
λ = (λ1, λ2, · · · , λl) satisfying λ1 ≥ λ2 ≥ · · · ≥ λl > 0 and n = λ1 + λ2 + · · · + λl.
We write λ ` n to denote that λ is a partition of n.

For instance, the number 4 has five partitions: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1). We can
also represent partitions pictorially using Young diagrams as follows.

Definition 2. A Young diagram is a finite collection of boxes arranged in left-justified rows,
with the row sizes weakly decreasing.1 The Young diagram associated to the partition λ =
(λ1, λ2, · · · , λl) is the one that has l rows, and λi boxes on the ith row.

For instance, the Young diagrams corresponding to the partitions of 4 are

(4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

Since there is a clear one-to-one correspondence between partitions and Young diagrams, we
use the two terms interchangeably, and we will use Greek letters λ and µ to denote them.

A Young tableau is obtained by filling the boxes of a Young diagram with numbers.

1The notation used here is known as the English notation. Most Francophones, however, use the French
notation, which is the upside-down form of the English notation. E.g. (3, 1) as .
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Definition 3. Suppose λ ` n. A (Young) tableau t of shape λ, is obtained by filling in the boxes
of a Young diagram of λ with 1, 2, . . . , n, with each number occurring exactly once. In this case,
we say that t is a λ-tableau.

For instance, here are all the tableaux corresponding to the partition (2, 1):

1 2
3

2 1
3

1 3
2

3 1
2

2 3
1

3 2
1

Definition 4. A standard (Young) tableau is a Young tableaux whose the entries are increasing
across each row and each column.

The only standard tableaux for (2, 1) are

1 2
3

and 1 3
2

.

Here is another example of a standard tableau:

1 2 4
3 5 6
7 8
9

.

The definitions that we use here are taken from [Sa], however, other authors have different
conventions. For instance, in [Fu], a Young tableau is a filling which is weakly increasing across
each row and strictly increasing down each column, but may have repeated entries. We call such
tableaux semistandard and we use them in Section 4.6.

Before we move on, let us recall some basic facts about permutations. Every permutation
π ∈ Sn has a decomposition into disjoint cycles. For instance (123)(45) denotes the permutation
that sends 1 → 2 → 3 → 1 and swaps 4 and 5 (if n > 5, then by convention the other elements
are fixed by π). The cycle type of π is the partition whose parts are the lengths of the cycles in
the decomposition. So (123)(45) ∈ S5 has cycle type (3, 2). It is a basic result that two elements
of Sn are conjugates if and only if they have the same cycle type. The easiest way to see this is
to consider conjugation as simply a relabeling of the elements when the permutation is written in
cycle notation. Indeed, if

π = (a1a2 . . . ak)(b1b2 . . . bl) · · · ,
and σ sends x to x′, then

σπσ−1 = (a′1a
′
2 . . . a

′
k)(b′1b

′
2 . . . b

′
l) · · · .

This means that the conjugacy classes of Sn are characterized by the cycle types, and thus they
correspond to partitions of n, which are equivalent to Young diagrams of size n. Recall from
representation theory that the number of irreducible representations of a finite group is equal to the
number of its conjugacy classes. So our goal for the next two sections is to construct an irreducible
representation of Sn corresponding to each Young diagram.

4.3 Tabloids and the Permutation Module Mλ

We would like to consider certain permutation representations of Sn. There is the obvious one:
the permutation action of Sn on the elements {1, 2, . . . , n}, which extends to the defining repre-
sentation. In this section, we construct other representations of Sn using equivalence classes of
tableaux, known as tabloids.

Definition 5. Two λ-tableaux t1 and t2 are row-equivalent, denoted t1 ∼ t2, if the corresponding
rows of the two tableaux contain the same elements. A tabloid of shape λ, or λ-tabloid is such an
equivalence class, denoted by {t} = {t1 | t1 ∼ t} where t is a λ-tabloid. The tabloid {t} is drawn
as the tableaux t without vertical bars separating the entries within each row.
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For instance, if

t = 1 2
3

then {t} is the tabloid drawn as
1 2
3

which represents the equivalence class containing the following two tableaux:

1 2
3

2 1
3

The notation is suggestive as it emphasizes that the order of the entries within each row is irrelevant,
so that each row may be shuffled arbitrarily. For instance:

1 4 7
3 6
2 5

=
4 7 1
6 3
2 5

6=
4 7 1
6 5
2 3

6=
4 7 1
2 3
6 5

We want to define a representation of Sn on a vector space whose basis is exactly the set of
tabloids of a given shape. We need to find a way for elements of Sn to act on the tabloids. We can
do this in the most obvious manner, that is, by letting the permutations permutate the entries of the
tabloid. For instance, the cycle (1 2 3) ∈ S3 acts on a tabloid by changing replacing its “1” by a
“2”, its “2” by a “3”, and its “3” by a “1”, as shown below:

(1 2 3)
1 2
3 =

2 3
1

We should check that this action is well defined, that is, if t1 and t2 are row-equivalent, so that
{t1} = {t2}, then the result of permutation should be the same, that is, π{t1} = π{t2}. This is
clear, as π simply gives the instruction of moving some number from one row to another.

Now that we have defined a way for Sn to act on tabloids, we are ready to define a representa-
tion of Sn. Recall that a representation of a group G on a complex vector space V is equivalent to
extending V to a C[G]-module, so we often use the term module to describe representations.

Definition 6. Suppose λ ` n. LetMλ denote the vector space whose basis is the set of λ-tabloids.
Then Mλ is a representation of Sn known as the permutation module corresponding to λ.

Let us show a few example of permutation modules. We see that the Mλ corresponding to the
following Young diagrams are in fact familiar representations.

Example 7. Consider λ = (n). We see thatMλ is the vector space generated by the single tabloid

1 2 · · · n .

Since this tabloid is fixed by Sn, we see that M (n) is the one-dimensional trivial representation.

Example 8. Consider λ = (1n) = (1, 1, . . . , 1). Then a λ-tabloid is simply a permutation of
{1, 2, . . . , n} into n rows and Sn acts on the tabloids by acting on the corresponding permutation.
It follows that M (1n) is isomorphic to the regular representation C[Sn].
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Example 9. Consider λ = (n − 1, 1). Let {ti} be the λ-tabloid with i on the second row. Then
Mλ has basis {t1}, {t2}, . . . , {tn}. Also, note that the action of π ∈ Sn sends ti to tπ(i). And so
M (n−1,1) is isomorphic to the defining representation C{1, 2, . . . , n}. For example, in the n = 4

case, the representation M (3,1) has the following basis:

t1 =
2 3 4
1

, t2 =
1 3 4
2

, t3 =
1 2 4
3

, t4 =
1 2 3
4

.

Now we consider the dimension and characters of the representation Mλ. First, we shall give
a formula for the number of tabloids of each shape.

Proposition 10. If λ = (λ1, λ2, · · · , λl),

dimMλ =
n!

λ1!λ2! · · ·λl!
.

We leave the proof of this proposition to the readers. It is a simple combinatorial exercise of
counting the number of λ-tabloids.

Now we give a formula for the characters of Mλ.

Proposition 11. Suppose λ = (λ1, . . . , λl), µ = (µ1, . . . , µm) are partitions of n. The character
of Mλ evaluated at an element of Sn with cycle type µ is equal to the coefficient of xλ1

1 xλ2
2 · · ·x

λl
l

in
mY
i=1

(xµi1 + xµi2 + · · ·+ xµil ).

To prove this formula, note that since Mλ can be realized as a permutation representation on
the λ-tabloids, its character at an element π ∈ Sn is equal to the number of tabloids fixed by π. The
rest of the proof consists of a simple generating function argument, which we leave to the readers.

Note that Proposition 10 also follows as a corollary to the above result. Indeed, the dimension
of a representation is simply the value of the character at the identity element, which has cycle type
µ = (1n). So Proposition 11 tells us that the dimension of Mλ is the coefficient of xλ1

1 xλ2
2 · · ·x

λl
l

in (x1 + · · · + xn)n, which is equal to dimMλ = n!
λ1!λ2!···λl!

by the multinomial expansion
formula.

Example 12. Let us compute the full list of the characters of the permutation modules for S4. The
character at the identity element is equal to the dimension, and it can found through Proposition 10.
For instance, the character of M (2,1,1) at e ∈ s4 is 4!/2! = 12.

Say we want to compute the character of M (2,2) at the permutation (12), which has cycle type
(2, 1, 1). Using Proposition 11, we see that the character is equal to the coefficient of x2

1x
2
2 in

(x2
1 + x2

2)(x1 + x2)2, which is 2. Other characters can be similarly computed, and the result is
shown in the following table.

permutation e (12) (12)(34) (123) (1234)
cycle type (1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

M (4) 1 1 1 1 1

M (3,1) 4 2 0 1 0

M (2,2) 6 2 2 0 0

M (2,1,1) 12 2 0 0 0

M (1,1,1,1) 24 0 0 0 0

Note that in the above example, we did not construct the character table for S4, as all the Mλ

are in fact reducible with the exception of M (4). In the next section, we take a step further and
construct the irreducible representations of Sn.
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4.4 Specht Modules
In the previous section, we constructed representations Mλ of Sn known as permutation modules.
In this section, we consider an irreducible subrepresentation ofMλ that corresponds uniquely to λ.

The group Sn acts on the set of Young tableaux in the obvious manner: for a tableaux t of size
n and a permutation σ ∈ Sn, the tableaux σt is the tableaux that puts the number π(i) to the box
where t puts i. For instance,

(1 2 3)(4 5)
1 2 4 5
3 6
7

=
2 3 5 4
1 6
7

.

Observe that a tabloid is fixed by the permutations which only permute the entries of the rows
among themselves. These permutations form a subgroup of Sn, which we call the row group. We
can similarly define the column group.

Definition 13. For a tableau t of size n, the row group of t, denoted Rt, is the subgroup of Sn
consisting of permutations which only permutes the elements within each row of t. Similarly, the
column group Ct is the the subgroup of Sn consisting of permutations which only permutes the
elements within each column of t.

For instance, if

t = 4 1 2
3 5

then
Rt = S{1,2,4} × S{3,5}, and Ct = S{3,4} × S{1,5} × S{2}.

Let us select certain elements from the space Mλ that we use to to span a subspace.

Definition 14. If t is a tableau, then the associated polytabloid is

et =
X
π∈Ct

sgn(π)π{t}.

So we can find et by summing all the tabloids that come from column-permutations of t, taking
into account the sign of the column-permutation used. For instance, if

t = 4 1 2
3 5

,

then

et =
4 1 2
3 5

− 3 1 2
4 5

− 4 5 2
3 1

+
3 5 2
4 1

.

Now, through the following technical lemma, we see that Sn acts on the set of polytabloids.

Lemma 15. Let t be a tableau and π be a permutation. Then eπt = πet.

Proof. First observe that Cπt = πCtπ
−1, which can be viewed as a “relabeling” similar to the

discussion at the end of Section 4.2. Then, we have

eπt =
X
σ∈Cπt

sgn(σ)σ{πt} =
X

σ∈πCtπ−1

sgn(σ)σ{πt}

=
X
σ′∈Ct

sgn(πσ′π−1)πσ′π−1{πt} = π
X
σ′∈Ct

sgn(σ′)σ′{t} = πet. 2

Now we are ready to extract an irreducible subrepresentation from Mλ.



Y. ZHAO—YOUNG TABLEAUX AND THE REPRESENTATIONS OF THE SYMMETRIC GROUP 39

Definition 16. For any partition λ, the corresponding Specht module, denoted Sλ, is the submod-
ule of Mλ spanned by the polytabloids et, where t is taken over all tableaux of shape λ.

Again, let us look at a few examples. We see that the Specht modules corresponding to the
following Young diagrams are familiar irreducible representations.

Example 17. Consider λ = (n). Then there is only one polytabloid, namely

1 2 · · · n

Since this polytabloid is fixed by Sn, we see that S(n) is the one-dimensional trivial representation.

Example 18. Consider λ = (1n) = (1, 1, . . . , 1). Let

t =

1
2
...
n

Observe that et is a sum of all the λ-tabloids multiplied by the sign of permutation it took to get
there. For any other λ-tableau t′, we have either et = et′ if t′ is obtained from t through an even
permutation, or et = −et′ if t′ is obtained from t through an odd permutation. So Sλ is a one-
dimensional representation. From Lemma 15 we have πet = eπt = sgn(π)et. From this we see
that S(1n) is the sign representation.

Example 19. Consider λ = (n − 1, 1). Continuing the notation from Example 9 where we use
{ti} to denote the λ-tabloid with i on the second row, we see that the polytabloids have the form
{ti} − {tj}. Indeed, the polytabloid constructed from the tableau

i a b · · ·
j

is equal to {ti} − {tj}. Let us temporarily use ei to denote the tabloid {ti}. Then Sλ is spanned
by elements of the form ei − ej , and it follows that

S(n−1,1) = {c1e1 + c2e2 + · · · cnen | c1 + c2 + · · ·+ cn = 0}.

This is an irreducible representation known as the standard representation. The direct sum of
the standard representation and the trivial representation gives the defining representation, that is,
S(n−1,1) ⊕ S(n) = M (n−1,1).

We know that the S3 has three irreducible representations: trivial, sign, and standard. These are
exactly the ones described above. Furthermore, there are exactly three partitions of 3: (3), (1, 1, 1),
(2, 1). So in this case, the irreducible representations are exactly the Specht modules. Amazingly,
this is true in general.

Theorem 20. The Specht modules Sλ for λ ` n form a complete list of irreducible representations
of Sn over C.

The proof may be found in [Sa]. Recall that at the end of Section 4.2 we noted that the number
of irreducible representations of Sn equals the number of Young diagrams with n boxes. This
Theorem gives a “natural” bijection between the two sets.
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Note that the polytabloids are generally not independent. For instance, as we saw in Example
18, any pair of polytabloids in S(1n) are in fact linearly dependent. Since we know that Sλ is
spanned by the polytabloids, we may ask how to select a basis for vector space from the set of
polytabloids. There is an elegant answer to this question: the set of polytabloids constructed from
standard tableaux form a basis for Sλ. Recall that a standard tableau is a tableau with increasing
rows and increasing columns.

Theorem 21. Let λ be any partition. The set

{et : t is a standard λ-tableau}

forms a basis for Sλ as a vector space.

The proof may be found in Sagan [Sa]. We only sketch an outline here. First, an ordering is
imposed on tabloids. If some linear combination of et is zero, summed over some standard tableaux
t, then by looking at a maximal tabloid in the sum, one can deduce that its coefficient must be zero
and conclude that {et : t is a standard λ-tableau} is independent. Next, to prove that the set spans
Sλ, a procedure known as the straightening algorithm is used to write an arbitrary polytabloid as
a linear combination of standard polytabloids.

Now we look at some consequences of the result. Let fλ denote the number of standard λ-
tableaux. Then the following result follows immediately from Theorem 21.

Corollary 22. Suppose λ ` n, then dimSλ = fλ.

Let us end this section with a few results concerning fλ.

Theorem 23. If n is a positive integer, thenX
λ`n

(fλ)2 = n!

where the sum is taken over all partitions of n.

Proof. Recall from representation theory that the sum of the squares of the irreducible representa-
tion is equal to the order of the group. This theorem follows from that fact and Corollary 22. 2

Theorem 23 also has an elegant combinatorial proof using the celebrated RSK correspondence.
See [Fu] or [Sa] for details.

Given the partition λ, the number dimSλ = fλ can be computed easily using the hook-length
formula of Frame, Robinson, and Thrall, which we state now.

Definition 24. Let λ be a Young diagram. For a square u in the diagram (denoted by u ∈ λ), we
define the hook of u (or at u) to be the set of all squares directly to the right of u or directly below
u, including u itself. The number of squares in the hook is called the hook-length of u (or at u),
and is denoted by hλ(u).

For example, consider the partition λ = (5, 5, 4, 2, 1). The figure on the left shows a typical
hook, and the figure on the right shows all the hook-lengths.

u • • •
•
•

9 7 5 4 1
8 6 4 3 1
6 4 2 1
3 1
1

Theorem 25 (Hook-length formula). Let λ ` n be a Young diagram. Then

dimSλ = fλ =
n!Q

u∈λ hλ(u)
.
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For instance, from the above example, we get

dimS(5,5,4,2,1) = f (5,5,4,2,1) =
17!

9 · 8 · 7 · 62 · 5 · 43 · 32 · 2 · 15
= 3403400.

For proof of the hook-length formula, see [Sa].
Finally, we state a formula for the characters of the representation Sλ.

Theorem 26 (Frobenius formula). Suppose λ = (λ1, . . . , λl), µ = (µ1, . . . , µm) are partitions
of n. The character of Sλ evaluated at an element of Sn with cycle type µ is equal to the coefficient
of xλ1+l−1

1 xλ2+l−2
2 · · ·xλll in

Y
1≤i<j≤l

(xi − xj)
mY
i=1

(xµi1 + xµi2 + · · ·+ xµil ).

See [FH] for proof. Observe the similarity between the statements of Proposition 10 and the
hook-length formula, and also between Proposition 11 and the Frobenius formula. The hook-length
formula can also be derived from the Frobenius formula by evaluating the character at the identity
element. Again, see [FH] for details.

4.5 Young Lattice and Branching Rule
Now let us consider the relationships between the irreducible representations of Sn and those of
Sn+1.

Consider the set of all Young diagrams. These diagrams can be partially ordered by inclusion.
The resulting partially ordered set is known as Young’s lattice.

We can represent Young’s lattice graphically as follows. Let λ ↗ µ denote that µ can be
obtained by adding a single square to λ. At the nth level, all the Young diagrams with n boxes are
drawn. In addition, λ to connected to µ if λ↗ µ. Here is a figure showing the bottom portion of
Young’s lattice (of course, it extends infinitely upwards).

;

Now we consider the following question: given Sλ a representation of Sn, how can we de-
termine its restricted representation in Sn−1 and its induced representation in Sn+1? There is a
beautiful answer to this question, given by Young’s branching rule.

Theorem 27 (Branching Rule). Suppose λ ` n, then

ResSn−1 S
λ ∼=

M
µ:µ↗λ

Sµ and Ind
Sn+1
Sn

Sλ ∼=
M
µ:λ↗µ

Sµ.
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For instance, if λ = (5, 4, 4, 2), so that

λ = ,

then the diagrams that can be obtained by removing a square are

So
ResS14 S

(5,4,4,2) = S(4,4,4,2) ⊕ S(5,4,3,2) ⊕ S(5,4,4,1).

Similarly, the diagrams that can be obtained by adding a square are

So
IndS16

S15
S(5,4,4,2) = S(6,4,4,2) ⊕ S(5,5,4,2) ⊕ S(5,4,4,3) ⊕ S(5,4,4,2,1).

The proof of Theorem 27 may be found in [Sa]. We shall only mention that the two parts of
the branching rules are equivalent through the Frobenius reciprocity theorem.

There is an interesting way to view this result. If we consider Sλ only as a vector space, then
the branching rule implies that

Sλ ∼=
M
µ:µ↗λ

Sµ ∼=
M

ν:ν↗µ↗λ

Sν ∼= · · · ∼=
M

∅=λ(0)↗λ(1)↗···↗λ(n)=λ

S∅.

The final sum is indexed over all upward paths from ∅ to λ in Young’s lattice. Since S∅ is simply
an one-dimensional vector space, it follows that we can construct a basis for Sλ where each basis
vector corresponds to a upward path in the Young lattice from ∅ to λ. However, observe that upward
paths in the Young lattice from ∅ to λ correspond to standard λ-tableaux! Indeed, for each standard
λ-tableaux, we can associate to it a path in the Young lattice constructed by adding the boxes in
order as labeled in the standard tableaux. The reverse construction is similar. As an example, the
following path in the Young lattice

∅↗ ↗ ↗ ↗ ↗

corresponds to the following standard tableau

1 2 4
3 5

.

So we have recovered a basis for Sλ which turned out to be the same as the one found in Theorem
21.

Now, one may object that this argument contains some circular reasoning, namely because
the proof of the branching rule (as given in [Sa]) uses Theorem 21, that a basis of Sλ can be
found through standard tableaux. This is indeed the case. However, there is an alternative view on
the subject, given recently by [VO], in which we start in an abstract algebraic setting with some
generalized form of the Young lattice. Then, we can form a basis known as the Gelfand-Tsetlin
basis by taking upward paths as we did above. We then specialize to the symmetric group and
“discover” the standard tableaux. This means that the standard tableaux in some sense form a
“natural” basis for Sλ.
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4.6 Decomposition of Mµ and Young’s Rule
First, we constructed the permutation modules Mλ, and from it we extracted irreducible subrepre-
sentations Sλ, such that Sλ forms a complete list of irreducible representations of Sn as λ varies
over all partitions of n.

Let us revisit Mµ and ask, how does Mµ decompose into irreducible representations. It turns
out that Mµ only contains the irreducible Sλ if λ is, in some sense, “greater” than µ. To make this
notation more precise, let us define a partial order on partitions of n. (Note that this is not the same
as the one used to define Young’s lattice!)

Definition 28. Suppose that λ = (λ1, λ2, . . . , λl) and µ = (µ1, µ2, . . . , µn) are partitions of n.
Then λ dominates µ, written λ D µ, if

λ1 + λ2 · · ·+ λi ≥ µ1 + µ2 + · · ·+ µi

for all i ≥ 1. If i > l (respectively, i > m), then we take λi (respectively, µi) to be zero.

In other words, λ D µ if, for every k, the first k rows of the Young diagram of λ contains more
squares than that of µ. Intuitively, this means that diagram for λ is short and fat and the diagram
for µ is long and skinny.

For example, when n = 6, we have (3, 3) D (2, 2, 1, 1). However, (3, 3) and (4, 1, 1) are in-
comparable, as neither dominates the other. The dominance relations for partitions of 6 is depicted
using the following figure. Such diagrams are known as Hasse diagrams and are used to represent
partially ordered sets.

(6)

(5)

OO

(4, 2)

OO

(3, 3)

??�����
(4, 1, 1)

__?????

(3, 2, 1)

__?????
??�����

(3, 1, 1, 1)

??�����
(2, 2, 2)

__?????

(2, 2, 1, 1)

__?????
??�����

(2, 1, 1, 1, 1)

OO

(1, 1, 1, 1, 1, 1)

OO

Now we can precisely state what we wanted to say at the beginning of the section.

Proposition 29. Mµ contains Sλ as a subrepresentation if and only if λ D µ. Also, Mµ contains
exactly one copy of Sµ.

We may ask how many copies of Sλ is contained in Mµ. It turns out that this answer has a
nice combinatorial interpretation. In order to describe it, we need a few more definitions.
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Definition 30. A semistandard tableau of shape λ is an array T obtained by filling in the boxes
of λ with positive integers, repetitions allowed, and such that the rows weakly increase and the
columns strictly increase. The content of T is the composition µ = (µ1, µ2, . . . , µm), where µi
equals the number of i’s in T .

For instance, the semistandard tableau shown below may be seen to have shape (4, 2, 1) and
content (2, 2, 1, 0, 1, 1):

1 1 2 5
2 3
6

.

The number of semistandard tableau of a given type and content is known as the Kostka num-
ber.

Definition 31. Suppose λ, µ ` n, the Kostka number Kλµ is the number of semistandard
tableaux of shape λ and content µ.

For instance, if λ = (3, 2) and µ = (2, 2, 1), then Kλµ = 2 since there are exactly two
semistandard tableaux of shape λ and content µ:

1 1 2
2 3

and 1 1 3
2 2

.

We are almost ready to state the result, but let us first make the following observation, whose
proof we leave as a combinatorial exercise for the readers.

Proposition 32. Suppose that λ, µ ` n. Then Kλµ 6= 0 if and only if λ D µ. Also, Kλλ = 1.

We are now ready to state the result about the decomposition of Mλ into irreducible represen-
tations.

Theorem 33 (Young’s Rule). Mµ ∼=
M
λDµ

KλµS
λ.

For instance, from the table above, we see that

M (2,2,1) ∼= S(2,2,1) ⊕ S(3,1,1) ⊕ 2S(3,2) ⊕ 2S(4,1) ⊕ S(5).

Note that Proposition 32 is a consequence of Young’s rule. We shall end with a couple of
examples illustrating Young’s rule.

Example 34. Note that K(n)µ = 1 as there is only one (n)-semistandard tableau of content µ,
formed by filling in all the required entries in order. Then Young’s Rule implies that every Mµ

contains exactly one copy of the trivial representation S(n) (see Example 17).

Example 35. Since a semistandard tableau with content (1n) is just a standard tableau, we have
Kλ(1n) = fλ (the number of standard λ-tableaux). So Young’s rule says thatM (1n) ∼=

L
λ f

λSλ.
But from Example 8 we saw that M (1n) is simply the regular representation. By taking the magni-
tude of the characters of both sides, we get another proof of the identity n! =

P
λ`n(fλ)2 that we

saw in Theorem 23.
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Abstract
In this paper we provide two simple new versions of Arrow’s impossibility theorem, in a model
with only one preference profile. Both versions are transparent, requiring minimal mathematical
sophistication. The first version assumes there are only two people in society, whose preferences
are being aggregated; the second version assumes two or more people. Both theorems rely on
assumptions about diversity of preferences, and we explore alternative notions of diversity at some
length. Our first theorem also uses a neutrality assumption, commonly used in the literature; our
second theorem uses a neutrality/monotonicity assumption, which is stronger and less commonly
used. We provide examples to illustrate our points.

5.1 Introduction
In 1950 Kenneth Arrow ([Ar1],[Ar2]) provided a striking answer to a basic abstract problem of
democracy: how can the preferences of many individuals be aggregated into social preferences?
The starkly negative answer, known as Arrow’s impossibility theorem, was that every conceivable
aggregation method has some flaw. That is, a handful of reasonable-looking axioms, which one
thinks an aggregation procedure should satisfy, lead to impossibility: the axioms are mutually
inconsistent. This impossibility theorem created a large literature and major field called social
choice theory; see for example, Suzumura’s ([Su]) Introduction to the Handbook of Social Choice
and Welfare, and the Campbell and Kelly ([CK]) survey in the same volume.1

†Allan M. Feldman was born and grew up in New Jersey. He received an Sc.B. degree in mathematics
from the University of Chicago and a Ph.D. in economics from Johns Hopkins University. He is a professor of
economics at Brown University and has taught at Brown since 1971.
‡Roberto Serrano was born and grew up in Madrid, Spain. He received an A.B. in economics from Uni-

versidad Complutense de Madrid and a Ph.D. in economics from Harvard University. He has been at Brown
since 1992, where he is now the Harrison S. Kravis University Professor of Economics. He is also a Research
Associate in IMDEA (Madrid Institute for Advanced Studies).

1The theorem has also had a major impact on the larger fields of economics and political science, as well as
on distant fields like mathematical biology. (See, e.g., Day and McMorris ([DM]).)
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In this paper we develop two very simple versions of Arrow’s impossibility theorem. Our
models are so-called single-profile models. This means impossibility is demonstrated in the context
of one fixed profile of preferences, rather than in the (standard) Arrow context of many varying
preference profiles.

Single-profile Arrow theorems were first proved in the late 1970’s and early 1980’s by Parks
([Pa]), Hammond ([Ha]), Kemp and Ng ([KN]), Pollak ([Po]), Roberts ([Ro]) and Rubinstein
([Ru]). Single-profile theorems were developed in response to an argument of Paul Samuelson
([Sa1]) against Arrow. Samuelson claimed that Arrow’s model, with varying preference profiles, is
irrelevant to the classical problem of maximizing a Bergson-Samuelson-type social welfare func-
tion (Bergson ([Be])), which depends on a given set of ordinal utility functions, that is, a fixed
preference profile. The single-profile Arrow theorems established that negative results, such as dic-
tatorship, or illogic of social preferences, or, more generally, impossibility of aggregation, could be
proved with one fixed preference profile (or set of ordinal utility functions), provided the profile is
“diverse” enough.

This paper has two purposes. The first is to provide two short and transparent single-profile
Arrow theorems. In addition to being short and simple, our theorems do not require the existence
of large numbers of alternatives. Our second purpose is to explore the meaning of preference pro-
file diversity. Our first Arrow impossibility theorem, which is extremely easy to prove, assumes
that there are only two people in society. The proof relies on a neutrality assumption and our first
version of preference diversity, which we call simple diversity. In our second Arrow impossibility
theorem, which is close to Pollak’s ([Po]) version, there are two or more people. For this ver-
sion we strengthen neutrality to neutrality/monotonicity, and we use a second, stronger version of
preference diversity, which we call complex diversity.

Other recent related literature includes Geanakoplos ([Ge]), who has three very elegant proofs
of Arrow’s theorem in the standard multi-profile context, and Ubeda ([Ub]) who has another elegant
multi-profile proof.2 These proofs, while short, are mathematically much more challenging than
ours. Reny ([Re]) has an interesting side-by-side pair of (multi-profile) proofs, of Arrow’s theorem
and the related theorem of Gibbard and Satterthwaite.

5.2 The Model
We assume a society with two or more individuals, and three or more alternatives. A specification
of the preferences of all individuals is called a preference profile. In our theorems there is only one
preference profile. The preference profile is somehow transformed into a social preference relation.
This might be done through a voting process, through the actions of an enlightened government,
or by the force of a dictator. Any kind of social choice process is possible in Arrow’s world. The
individual preference relations are all assumed to be complete and transitive. Both the individual
and the social preference relations allow indifference. The following notation is used: Generic
alternatives are x, y, z, w, . . . . Particular alternatives are a, b, c, d, . . . . A generic person is labeled
i, j, k, . . .; a particular person is 1, 2, 3, . . . . Person i’s preference relation is Ri. xRiy means
person i prefers x to y or is indifferent between them; xPiy means i prefers x to y; xIiy means i
is indifferent between them. Society’s preference relation is R. xRy means society prefers x to y
or is indifferent between them; xPy means society prefers x to y; xIy means society is indifferent
between them. We start with the following assumptions3:

(1) Complete and transitive social preferences. The social preference relation R is complete
and transitive.

(2.a) Weak Pareto principle. For all x and y, if xPiy for all i, then xPy.

2Ubeda also emphasizes the importance of (multi-profile) neutrality, similar to but stronger than the assump-
tion we use in this paper, and much stronger than Arrow’s independence assumption, and he provides several
theorems establishing neutrality’s equivalence to other intuitively appealing principles.

3Assumptions are just assumptions, and are not necessarily true. In fact, Arrow’s problem is to show that a
set of assumptions is inconsistent: if all but one are true, then the remaining one must be false.



48 THE HARVARD COLLEGE MATHEMATICS REVIEW 2.2

(2.b) Strong Pareto principle. For all x and y, if xRiy for all i, and xPiy for some i, then xPy.

(3.a) Neutrality. Suppose individual preferences for w versus z are identical to individual pref-
erences for x versus y. Then the social preference for w versus z must be identical to the
social preference for x versus y. Formally: For all x, y, z, and w, assume that, for all i,
xPiy if and only if wPiz and zPiw if and only if yPix. Then wRz if and only if xRy, and
zRw if and only if yRx.

(4) No dictator. There is no dictator. Individual i is a dictator if, for all x and y, xPiy implies
xPy.

(5.a) Simple diversity. There exists a triple of alternatives x, y, z such that xPiy for all i, but
opinions are split on x versus z and on y versus z. That is, some people prefer x to z and
some people prefer z to x, and, similarly, some people prefer y to z and some people prefer
z to y.

Note that we have two alternative versions of the Pareto principle here. The first (weak Pareto)
is more common in the Arrow’s theorem literature (e.g., see Campbell and Kelly ([CK, p. 42])). We
will use the strong Pareto principle in our two-person impossibility theorem below, and the weak
Pareto principle in our two-or-more person impossibility theorem. Neutrality, assumption (3.a), and
simple diversity, assumption (5.a), are so numbered because we will introduce alternatives later.

Also note that the no dictator assumption is different in a world with a single preference profile
from what it is in the multi-profile world. For example, in the single-profile world, if all individuals
have the same preferences, and if Pareto holds (weak or strong), then by definition everyone is a
dictator. Or, if individual i is indifferent among all the alternatives, he is by definition a dictator.
We will discuss this possibility of innocuous dictatorship in Section 5.9 below.

5.3 Some Examples in a Two-Person Model
We illustrate with a few simple examples. For these there are two people and three alternatives,
and we assume no individual indifference between any pair of alternatives. Given that we aren’t
allowing individual indifference, the two Pareto principles collapse into one. Preferences of the two
people are shown by listing the alternatives from top (most preferred) to bottom (least preferred). In
our examples, the last column of the table shows what is being assumed about society’s preferences.
The comment below each example indicates which desired property is breaking down. The point
of these examples is that if we are willing to discard any one of our five basic assumptions, the
remaining four may be mutually consistent.

Person 1 Person 2 Society (Majority Rule)
a c
b a aPb, aIc, & bIc
c b

Example 1. Transitivity for social preferences fails. Transitivity for R implies transitivity for I .
This means aIc & cIb should imply aIb. But we have aPb.

Person 1 Person 2 Society
a c
b a aIbIc
c b

Example 2. Pareto (weak or strong) fails, because aP1b and aP2b should imply aPb. But we have
aIb.

Person 1 Person 2 Society
a c a
b a c
c b b
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Example 3. Neutrality fails. Compare the social treatment of a versus c, where the two people are
split and person 1 gets his way, to the social treatment of b versus c, where the two people are split
and person 2 gets his way.

Person 1 Person 2 Society (1 is Dictator)
a c a
b a b
c b c

Example 4. There is a dictator.

Note that Examples 1 through 4 all use the same profile of individual proferences, which
satisfies the simple diversity assumption. The next example modifies the individual preferences:

Person 1 Person 2 Society (Majority Rule)
a c
c a aIc
b b aPb & cPb

Example 5. Simple diversity fails. Opinions are no longer split over two pairs of alternatives.

5.4 Neutrality, Independence, and Some Preliminary Arrow Para-
doxes

One of the most controversial of Arrow’s original assumptions was independence of irrelevant
alternatives. We did not define it above because it does not play a direct role in single-profile Arrow
theorems; however it lurks behind the scenes. Therefore we define it at this point. Independence
requires the existence of multiple preference profiles, and to accommodate multiple profiles, we
use primes: Person i’s preference relation was shown as Ri above, and society’s as R; at this point
we will write R′i and R′ for alternative preferences for person i and society, respectively. Now
consider a pair of alternatives x and y. Arrow’s independence of irrelevant alternatives condition
requires appropriate consistency in the social ranking of x and y as individual preferences switch
from unprimed to primed. More formally:

(6) Independence. Let R1, R2, . . . and R be one set of individual and social preference rela-
tions andR′1, R′2, . . . andR′ be another. Assume that for all i, xPiy if and only if xP ′iy and
yP ′ix if and only if yPix. Then xRy if and only if xR′y and yR′x if and only if yRx.

Note the parallel between the independence assumption and the neutrality assumption. Indepen-
dence involves multiple preference profiles whereas our version of neutrality assumes there is one
preference profile. Independence focuses on a pair of alternatives and switches between two pref-
erence profiles, one unprimed and the other primed. It says that if the x versus y individual prefer-
ences are the same under the two preference profiles, then the x versus y social preference must also
be the same. This statement is of course meaningless if there is only one preference profile. The
closest analogy when there is only one preference profile is neutrality, which says that if individual
preferences regarding x versus y under the one fixed preference profile are the same as individual
preferences regarding w versus z under that profile, then the x versus y social preference must be
the same as the w versus z social preference.

In short, in a single-profile model, independence is a vacuous assumption, and its natural re-
placement is neutrality.4

This natural replacement, however, prompted Samuelson to launch an attack in [Sa2] directed
at the Kemp’s and Ng’s neutrality assumption in [KN]. Samuelson called neutrality, among other
things, “anything but reasonable,” and “gratuitous.” ([Sa2]) He offered the following reductio ad
absurdum example:

4The definition of neutrality can be easily extended to a multi-profile model, and neutrality is a stronger
assumption than independence in such a model.
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u1

u2

u(w)

u(x)

u(y)

u(z)

Figure 5.1: Fleurbaey and Mongin’s Arrow impossibility argument.

Example 6 (Samuelson’s Chocolates). There are two people. There is a box of 100 (indivisible)
chocolates to be distributed between them. They both like chocolates, and each is hungry enough
to eat them all. The alternatives are x0 = (100, 0), x1 = (99, 1), x2 = (98, 2), . . . , where the
first number is the number of chocolates going to person 1 and the second is the number going to
person 2.

Many ethical observers, looking at this society, would say that x1 is better than x0. That is,
x1Px0. That is, it would be a good thing to take a chocolate from person 1, when he has 100 of
them, and give it to person 2. Note that x0P1x1 and x1P2x0.

Now consider any k < 100. The individual preferences are xkP1x100 and x100P2xk, similar
to the individual preferences for x0 versus x1. By neutrality, x100Pxk! That is, society should give
all the chocolates to person 2!

Samuelson’s chocolates example is a vivid attack on neutrality, but should not be viewed as a
compelling reason to drop it. One response to the example is to say society should not decide that
x1 is better than x0 in the first place; if society simply found x0 and x1 equally good (contrary
to the instincts of the chocolate redistributionist), neutrality would have implied that all the x’s
are socially indifferent. This would have been perfectly logical. Another response is to observe
that neutrality is a property of extremely important and widely used decision-making procedures,
particularly majority voting, and therefore cannot be lightly dismissed. In fact, any social decision
procedure that simply counts instances of xPiy, yPix, and xIiy, but does not weigh strength of
feelings, satisfies neutrality.

Samuelson ([Sa2]) also offered a graphical argument against Arrow’s theorem with neutrality,
an argument that was simplified and improved years later by Fleurbaey and Mongin ([FM]), as
follows:
Fleurbaey and Mongin Graphical Arrow Impossibility Argument. Assume that there are two peo-
ple, and some set of alternatives x, y, z, . . . . Assume the individuals have utility functions u1 and
u2, so u1(x), for example, represents person 1’s utility level from alternative x.

Consider the graph in Figure 5.1. Utility levels of individuals 1 and 2 are on the horizontal
and vertical axes, respectively. Each alternative shows up in the graph as a utility pair, for instance
u(z) = (u1(z), u2(z)) represents alternative z. We start at u(z) and draw horizontal and vertical
lines through it, creating four quadrants.

Now assume complete and transitive social preferences, strong Pareto and neutrality. Take two
alternatives, say x and y, whose utility vectors are within the southeast quadrant. Choose them so
that u(x) is northeast of u(y).

Social indifference between z and x is impossible, for the following reasons: First, by neutral-
ity, if zIx, then zIy, must also hold. Second, if zIx and zIy, then xIy by transitivity. But third,
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since u(x) is northeast of u(y), xPy by Pareto.
Therefore either society prefers z to x, or society prefers x to z. Suppose xPz. Now consider

another alternative w. By neutrality, if u(w) is in the northwest quadrant (as in Figure 5.1), xPz
implies zPw. By neutrality, if u(w) is in the southeast quadrant, xPz implies wPz. By strong
Pareto, if u(w) is in the northeast quadrant, wPz. By strong Pareto, if u(w) is in the southwest
quadrant, zPw. But this argument establishes that social preferences (for w versus z) are always
exactly the same as person 1’s; that is, person 1 is a dictator. Had we started out by assuming zPx,
person 2 would have been the dictator. In short, the graph produces an Arrow impossibility. 2

There are two drawbacks to the Fleurbaey/Mongin/(Samuelson) graphical impossibility argu-
ment. First, it has the disadvantage that it requires the use of the utility functions u1 and u2—it is
cleaner to dispense with utility functions and simply use preference relations for individuals. Sec-
ond, it incorporates a crucial diversity assumption without being explicit about it. Assuming the
existence of the triple of utility vectors u(x), u(y), and u(z), with their respective locations in the
utility diagram, is in fact exactly the assumption of simple diversity: both 1 and 2 prefer x to y, but
opinions are split on x versus z and opinions are split on y versus z. In Theorem 8 below, we make
this assumption explicit.

5.5 Arrow Impossibility Theorem, n = 2
We are ready to turn to our own simple version of Arrow’s impossibility theorem, in the single-
profile model. Throughout this section, we assume there are two people in society. We will show
that our five assumptions, complete and transitive social preferences, strong Pareto, neutrality, sim-
ple diversity, and no dictator, are mutually inconsistent.

First we establish Proposition 7, which is by itself a very strong result. This proposition corre-
sponds to the Samuelson’s chocolates example, and so we call it Samuelson’s chocolates proposi-
tion. Then we prove our first simple version of Arrow’s theorem.

Proposition 7 (Samuelson’s Chocolates). Assume n = 2. Assume the strong Pareto principle and
neutrality. Suppose for some pair of alternatives x and y, and for the two people i and j, xPiy and
yPjx. Suppose that xPy. Then person i is a dictator.

Proof. Let w and z be any pair of alternatives. Assume wPiz. We need to show that wPz must
hold. If wRjz, then wPz by strong Pareto. If not, wRjz, then zPjw by completeness for j’s
preference relation, and then wPz by neutrality. 2

Theorem 8 (Arrow Impossibility Theorem). Assume n = 2. The assumptions of complete and
transitive social preferences, strong Pareto, neutrality, simple diversity, and no dictator are mutally
inconsistent.

Proof. By simple diversity there exist x, y and z such that xPiy for i = 1, 2, but such that opinions
are split on x versus z, and on y versus z.

Now xPy by the Pareto principle, weak or strong. Since opinions are split on x versus z, one
person prefers x to z, while the other prefers z to x. If xPz, then the person who prefers x to z is a
dictator by Proposition 7. If zPx, then the person who prefers z to x is a dictator by Proposition 7.

Suppose then that xIz. Then zIx. By transitivity, zIx and xPy implies zPy. But opinions
are split on y versus z. Therefore one person prefers z to y, and the other person prefers y to z. By
Proposition 7, the person who prefers z to y is a dictator. We have shown that whatever the social
preference for x and z might be, there must be a dictator. 2

5.6 Trying to Generalize to an n-Person Model
In what follows we seek to generalize our version of Arrow’s theorem to societies with two or more
people. In order to get an impossibility theorem when n ≥ 2, we need to strengthen some of our
basic assumptions. We start with the neutrality assumption. We will strengthen it to a single-profile
version of what is called neutrality/monotonicity.5 The intuition is that if everybody who prefers

5See Blau & Deb ([BD]), who call the multi-profile analog “full neutrality and monotonicity”; Sen ([Se]),
who calls it NIM; and Pollak ([Po]), who calls it “nonnegative responsiveness.”
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x over y also prefers z over w, and everybody who prefers w over z also prefers y over x, then if
society prefers x to y, it should also prefer w to z.

(3.b) Neutrality/monotonicity. For all x, y, z, and w, assume that for all i, xPiy implies wPiz,
and that for all i, zPiw implies yPix. Then xPy implies wPz.

This strengthening of the neutrality assumption does not, by itself, give us an Arrow impos-
sibility theorem when there are two or more people. In Example 9 below there are three peo-
ple and four alternatives, a, b, c and d. The preferences of individuals 1, 2, and 3 are shown
in the first 3 columns of the table. The fourth column shows social preferences under major-
ity rule, which is used here, as in Examples 1 and 5, to generate the social preference relation.

Person 1 Person 2 Person 3 Society (Majority Rule)
a c a a
b a c c
c b d b
d d b d

Example 9. None. The complete and transitive social preferences assumption is satisfied, as are
Pareto, neutrality/monotonicity, simple diversity, and no dictator. Majority rule works fine. There
is no Arrow impossibility.

Example 9 shows that when n ≥ 2 there is no Arrow impossibility, under the assumptions of
complete and transitive social preferences, Pareto, neutrality/monotonicity, simple diversity, and no
dictator.

5.7 Diversity
In this section we will modify the diverse preferences assumption.

Before doing so, let’s revisit the assumption in the two-person world. In that world, simple
diversity says there must exist a triple of alternatives x, y, z, such that xPiy for i = 1, 2, but
such that opinions are split on x versus z and on y versus z. That is, one person prefers x to z,
while the other prefers z to x, and one person prefers y to z, while the other prefers z to y. Given
our assumption that individual preferences are transitive, it must be the case that the two people’s
preferences over the triple can be represented as follows:

Person i Person j
x z
y x
z y

Table 5.1: Simple diversity array, n = 2.

Note that this is exactly the preference profile pattern of Examples 1, 2, 3 and 4. 6

A somewhat similar array was used by Arrow in the proof of his impossibility theorem.7 For
now assume that V is any non-empty set of people in society, that V C is the complement of V , and
that V can be partitioned into two non-empty subsets V1 and V2. (Note that V C may be empty.)
The standard Arrow preference array looks like this:

Now, let’s return to the question of how to modify the diverse preferences assumption. Example
9 shows that we cannot stick with the simple diversity array and still get an impossibility result. We

6 Readers familiar with social choice theory will recognize the simple diversity array as being two thirds of
the Condorcet voting paradox array. Condorcet’s array simply adds a third person, say k, who prefers y to z to
x.

7The array to which we now turn has been used by Arrow ([Ar2, p. 58]) and by many others since, including
us ([FS, p. 294]).
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People in V1 People in V2 People in V C

x z y
y x z
z y x

Table 5.2: Standard Arrow array.

might start with the Condorcet voting paradox array, but if n ≥ 4, we would have to worry about
the preferences of people other than i, j and k. That suggests using something like the standard
Arrow array. However, assuming the existence of a triple x, y, and z, and preferences as per that
array, for every subset of people V and every partition of V , is an unnecessarily strong diversity
assumption.

An even stronger diversity assumption was in fact used by Parks ([Pa]), Pollak and other orig-
inators of single-profile Arrow theorems. Pollak ([Po]) is clearest in his definition. His condition
of “unrestricted domain over triples” requires the following: Imagine “any logically possible sub-
profile” of individual preferences over three “hypothetical” alternatives x, y and z. Then there
exist three actual alternatives a, b and c for which the sub-profile of preferences exactly matches
that “logically possible sub-profile” over x, y and z. We will call this Pollak diversity. Let us con-
sider what this assumption requires in the simple world of strict preferences, two people, and three
alternatives. Pollak diversity would require that every one of the following arrays be represented,
somewhere in the actual preference profile of the two people over the actual alternatives:

1 2 1 2 1 2 1 2 1 2 1 2
x x x x x y x y x z x z
y y y z y x y z y x y y
z z z y z z z x z y z x

Table 5.3: Pollak diversity arrays, n = 2.

Note that the number of arrays in the table above is 3! = 6. If n were equal to 3 we would have
triples of columns instead of pairs, and there would have to be (3!)2 = 36 such triples. With n
people, the number of required n-tuples would be (3!)n−1. In short, the number of arrays required
for Pollak diversity rises exponentially with n. The number of alternatives rises with the number
of required arrays, although not as fast because of array overlaps. Parks ([Pa]) uses an assumption
(“diversity in society”) that is very similar to Pollak’s, although not so clear, and he indicates that
it “requires at least 3n alternatives. . . ”.

Pollak diversity is actually much stronger than necessary. We will weaken it as follows. We
will not assume the existence of a triple x, y and z and every conceivable array of preferences on
that triple. Nor will we assume the existence of a triple x, y and z and every conceivable array of
preferences on that triple, but restricted to sets V , V1, V2, and V C , as per the description of the
standard Arrow array. Rather, we will simply assume the existence of triple x, y and z, and the
standard Arrow array preferences on that triple, when it really matters. For our purposes, it really
matters when the set V referenced in the description of the standard Arrow array is a decisive set.
This is defined as follows:

Definition 10. We say that a set of people V is decisive if it is non-empty and if, for all alternatives
x and y, if xPiy for all i in V , then xPy.

It is appropriate to make a few comments about the notion of decisiveness. First, note that if
person i is a dictator, then i by himself is a decisive set, and any set containing i is also decisive.
Also, note that the Pareto principle (weak or strong) implies the set of all people is decisive. Second,
in a multi-preference profile world, decisiveness for V would be a far stronger assumption that
it is in the single-profile world, since it would require that (the same) V prevail no matter how
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preferences might change. We only require that V always prevail under the single preference
profile.

Our diversity assumption is now modified as follows:

(5.b) Complex diversity. For any decisive set V with 2 or more members, there exists a triple
of alternatives x, y, z, such that xPiy for all i in V ; such that yPiz and zPix for everyone
outside of V ; and such that V can be partitioned into non-empty subsets V1 and V2, where
the members of V1 all put z last in their rankings over the triple, and the members of V2 all
put z first in their rankings over the triple.

The assumption of complex diversity means that for any decisive set V with two or more
members, there is a triple x, y, and z, and a partition of V , which produces exactly the standard
Arrow array shown above.

Simple diversity and complex diversity are related in the following way: If n = 2 and weak
Pareto holds, they are equivalent. If n > 2, neither one implies the other, but they are both implied
by Pollack diversity.

Referring back to Example 9 of the previous section, consider persons 2 and 3. Under simple
majority rule, which was assumed in the example, they constitute a decisive coalition. However the
complex diversity assumption fails in the example, because there is no way to define the triple x, y,
z so as to get the standard Arrow array, when V = {2, 3}. Therefore complex diversity rules out
that example.

Example 11 below modifies Example 9 so that, for the decisive set V = {2, 3}, the preference
profile is consistent with complex diversity. (This example is created from Example 9 by switching
alternatives a and b in person 3’s ranking. Let V1 = {2}, V2 = {3}, and V C = {1}. The triple
x, y, z is now c, a, b.) Now that preferences have been modified consistent with our new diversity
assumption, an Arrow impossibility pops up.

Person 1 Person 2 Person 3 Society (Majority Rule)
a c b
b a c aPb, bPc, cPa
c b d aPd, bPd, cPd
d d a

Example 11. Transitivity for social preference fails with a strict social preference cycle among a,
b, and c. Society prefers a to b, b to c, and, irrationally, c to a.

Example 11 could be further modified by dropping alternative d, in which case it would become
the Condorcet voting paradox array. (See footnote 6 above.) It would then have three people and
three alternatives, and would satisfy complex diversity. Recall that Pollack diversity in the three-
person case would require at least 36 n-tuples of alternatives, and that Parks diversity would require
at least 3n = 27 alternatives. The point here is that that complex diversity is a much less demanding
assumption, and requires many fewer alternatives, than Pollack diversity.

Complex diversity captures the idea of moderately divergent opinions when there are three or
more people in society. It requires that when V is a decisive set with two or more members, there
must exist some triple of alternatives x, y, and z about which there is basic disagreement, both
within V (with those in V1 putting z at the bottom and those in V2 putting z and the top), and
between V and V C (with those in V preferring x over y, while those in V C preferring y over
x). But it is not an overly strong assumption, like Pollak diversity, nor does it require an enormous
number of alternatives. We do not claim that the complex diversity assumption has the moral appeal
of the Pareto principal or the no dictatorship assumption, but it is a plausible possibility, and one
can very easily imagine real examples of preferences like those assumed in Example 11 above.

We will finish this discussion of diversity by noting our complex diversity assumption might
be modified in either of two directions: It could be strengthened, by dropping the requirement in
the definition that V be a decisive set. We will call the diversity assumption so modified arbitrary
V complex diversity. This assumption would be closer to Pollak diversity. Alternatively, the
complex diversity assumption could be weakened, by adding the requirement that V be a decisive
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set of minimal size. We will call the diversity assumption so modified minimally-sized decisive
V complex diversity. We will briefly refer to both of these modifications at the end of the next
section.

5.8 Arrow/Pollak Impossibility, n ≥ 2
We now proceed to a proof of our second single-profile Arrow’s theorem, which, unlike Theorem 8,
is not restricted to a two-person society.8 Although Pollak made a much stronger diversity assump-
tion than we use, and although Parks ([Pa]), Hammond ([Ha]), and Kemp and Ng ([KN]), preceded
Pollak with single-profile Arrow theorems, we will call this the Arrow/Pollak Impossibility The-
orem, because of the similarity of our proof to his. But first, we need a proposition paralleling
Proposition 7:

Proposition 12. Assume n ≥ 2 and neutrality/monotonicity. Assume there is a non-empty group
of people V and a pair of alternatives x and y, such that xPiy for all i in V and yPix for all i not
in V . Suppose that xPy. Then V is decisive.

Proof. This follows immediately from neutrality/monotonicity. 2

Theorem 13 (Arrow/Pollak Impossibility Theorem). Assume n ≥ 2. The assumptions of complete
and transitive social preferences, weak Pareto, neutrality/monotonicity, complex diversity, and no
dictator are mutually inconsistent.

Proof. By the weak Pareto principle, the set of all individuals is decisive. Therefore decisive sets
exist. Let V be a decisive set of minimal size, that is, a decisive set with no proper subsets that
are also decisive. We will show that there is only one person in V , which will make that person a
dictator. This will establish Arrow’s theorem.

Suppose to the contrary that V has 2 or more members. By the complex diversity assumption
there is a triple of alternatives x, y, and z, and a partition of V into non-empty subsets V1 and V2,
giving the standard Arrow array as shown above. Since V is decisive, it must be true that xPy.
Next we consider the social preference for x versus z.
Case 1. Suppose zRx. Then zPy by transitivity. Then V2 becomes decisive by Proposition 12
above. But this is a contradiction, since we assumed that V was a decisive set of minimal size.
Case 2. Suppose not zRx. Then the social preference must be xPz, by completeness. But in this
case V1 is getting its way in the face of opposition by everone else, and by Proposition 12 above V1

is decisive, another contradiction. 2

In Section 5.7 above we mentioned two alternative versions of complex diversity, a stronger
version, arbitrary V complex diversity, and a weaker version, minimally-sized decisive V complex
diversity. Either of these could be substituted for complex diversity in Theorem 13 above, without
affecting the proof. Moreover, using the minimally-sized V complex diversity assumption would
give the following near-converse to Arrow’s theorem: If there is a dictator, then the minimally-
sized V complex diversity assumption is satisfied. This follows immediately from the definition
of minimally-sized V complex diversity. For if i is a dictator, then {i} is a decisive set; so any
minimally-sized decisive set can have only one member, and therefore cannot be partitioned into
two non-empty subsets. Consequently the definition of minimally-sized V complex diversity is
vacuously satisfied.

5.9 Innocuous Dictators
In the standard multi-profile world, where all preference profiles are allowed (the so-called “uni-
versality,” or “full domain” assumption) a dictator is a very bad thing indeed. A dictator in such
a world forces his (strict) preference for x over y even if everyone else prefers y over x. In our
single-profile world, on the other hand, a dictator may be innocuous. For instance, if person i is
indifferent between all pairs of alternatives, he is by definition a dictator, although a completely
benign one. Or, if everyone has exactly the same preferences over the alternatives, and weak Pareto

8There is a similar proof, but for a multi-profile Arrow’s theorem, in Feldman & Serrano ([FS]).
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is satisfied, then each person is a dictator. Or, if in a committee of five people, three have identical
preferences, and if they use majority rule, then the three with identical preferences are all dicta-
tors. (Note however that in a standard median voter model, the median voter is not necessarily a
dictator. While his favorite alternative may be the choice of the committee, the committee’s prefer-
ences over all pairs of alternatives will not necessarily agree with his preferences over those pairs
of alternatives.)

Therefore we need to make a final comment about why dictatorship should worry us, even
though some dictators are innocuous: While we assume a single-profile world in this paper, and
while for certain given profiles dictatorship doesn’t look bad, we must remember that there can
be other single-profile worlds with different given preference profiles. So, while in some cases an
innocuous dictatorship is acceptable, in many other cases it is very much unacceptable. Moreover,
both of our diversity assumptions exclude vacuous dictatorship cases like the one in which all
individuals have exactly the same preferences. In sum, even though single-profile analysis may
permit innocuous dictators, dictatorship remains a very bad thing, and Arrow’s theorem remains
important.

5.10 Conclusions
We have presented two new single-profile Arrow impossibility theorems which are simple and
transparent. Theorem 8, which requires that there are only two people, relies on a very simple
and modest assumption about diversity of preferences within the given preference profile, and on a
relatively modest neutrality assumption. Theorem 13, which allows for two or more people, uses a
substantially more complex assumption about diversity of preferences within the given profile, and
uses a stronger neutrality/monotonicity assumption. Both theorems establish that Arrow impossi-
bility happens even if individual preferences about alternatives are given and fixed.
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Abstract
We discuss a famous problem about right triangles with rational side lengths. This elementary-
sounding problem is still not completely solved; the last remaining step involves the Birch and
Swinnerton-Dyer conjecture, which is one of the most important open problems in number theory
(right up there with the Riemann hypothesis).

6.1 Introduction
A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples
of rational right triangles include Pythagorean triples like (3, 4, 5). We can scale such triples to get
other rational right triangles, like (3/2, 2, 5/2). Of course, usually when two sides are rational the
third side is not rational, such as in the (1, 1,

√
2) right triangle.

Any rational right triangle has a rational area, but not all (positive) rational numbers can occur
as the area of a rational right triangle. For instance, no rational right triangle has area 1. This was
proved by Fermat. The question we will examine here is: which rational numbers occur as the area
of a rational right triangle?

Definition 1. A positive rational number n is called a congruent number if there is a rational right
triangle with area n: there are rational a, b, c > 0 such that a2 + b2 = c2 and (1/2)ab = n.

In Figure 6.1, there are rational right triangles with respective areas 5, 6, and 7, so these three
numbers are congruent numbers.

This use of the word congruent has nothing to do (directly) with congruences in modular arith-
metic. The etymology will be explained in Section 6.3. The history of congruent numbers can
be found in [Di, Chap. XVI], where it is indicated that an Arab manuscript called the search for
congruent numbers the “principal object of the theory of rational right triangles.”

The congruent number problem asks for a description of all congruent numbers. Since scaling
a triangle changes its area by a square factor, and every rational number can be multiplied by a
suitable rational square to become a squarefree integer (e.g., 18/7 = 32 · 2/7, so multiplying by
(7/3)2 produces the squarefree integer 14), we can focus our attention in the congruent number
problem on squarefree positive integers. For instance, to say 1 is not a congruent number means no
rational square is a congruent number.

When n is squarefree in Z+, we just need to find an integral right triangle whose area has
squarefree part n to show n is a congruent number. Then writing the area as m2n shows scaling
the sides by m produces a rational right triangle with area n.

In Section 6.2, the parametrization of Pythagorean triples will be used to construct a lousy
algorithm to generate all congruent numbers. The equivalence of the congruent number problem
with a problem about rational squares in arithmetic progressions is in Section 6.3. Section 6.4
gives an equivalence between the congruent number problem and the search for rational points
on y2 = x3 − n2x where y 6= 0, which ultimately leads to a solution of the congruent number

†Keith Conrad received his undergraduate and graduate degrees in mathematics from Princeton (1992) and
Harvard (1997). He became interested in number theory as a high school student at the Ross program at Ohio
State University in 1986.
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Figure 6.1: Rational right triangles with area 5, 6, and 7.

problem (depending in part on the Birch and Swinnerton-Dyer conjecture, a famous open problem
in mathematics). In the appendices, we explain some algebraically mysterious formulas from our
treatment using projective geometry and give a relation between the congruent number problem
and other Diophantine equations.

6.2 A bad algorithm
There is a parametric formula for primitive Pythagorean triples and by using it we will make a
small list of squarefree congruent numbers. Any primitive triple (with even second leg) is (k2 −
`2, 2k`, k2 + `2) where k > ` > 0, (k, `) = 1, and k 6≡ ` mod 2. In Table 6.1 we list such
primitive triples where k+ ` ≤ 9. The squarefree part of the area is listed in the last column. Each
number in the fourth column is a congruent number and each number in the fifth column is also a
congruent number. The final row of the table explains how a rational right triangle with area 5 can
be found.

k ` (a, b, c) (1/2)ab Squarefree part
2 1 (3, 4, 5) 6 6
4 1 (15, 8, 17) 60 15
3 2 (5, 12, 13) 30 30
6 1 (35, 12, 37) 210 210
5 2 (21, 20, 29) 210 210
4 3 (7, 24, 25) 84 21
8 1 (63, 16, 65) 504 126
7 2 (42, 28, 53) 630 70
5 4 (9, 40, 41) 180 5

Table 6.1: Congruent Numbers.

Notice 210 shows up twice in Table 6.1. Do other numbers which occur once also occur again?
We will return to this question later.

Table 6.1 can be extended according to increasing values of k + `, and any squarefree con-
gruent number eventually shows up in the last column, e.g., the triangle (175, 288, 337) with area
25200 = 7 · 602 occurs at k = 16 and ` = 9. Alas, the table is not systematic in the appear-
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ance of the last column: we can’t tell by building the table when any particular number should
occur, if at all, in the last column, so this method of generating (squarefree) congruent numbers
is not a good algorithm. For instance, 53 is a congruent number, but it shows up for the first
time when k = 1873180325 and ` = 1158313156. (The corresponding right triangle has area
53 · 2978556542849787902.)

Tabulations of congruent numbers can be found in Arab manuscripts from the 10th century,
and 5 and 6 appear there. Fibonacci discovered in the 13th century that 7 is congruent and he stated
that 1 is not congruent (that is, no rational right triangle has area equal to a perfect square). The
first accepted proof is due to Fermat, who also showed 2 and 3 are not congruent numbers.

Theorem 2 (Fermat, 1640). The number 1 is not congruent.

Proof. We will use the method of descent, which was discovered by Fermat on this very problem.
Our argument is adapted from [Co, pp. 658–659].

Assume there is a rational right triangle with area 1. Calling the sides a/d, b/d, and c/d, where
a, b, c, and d are positive integers, we have a2 + b2 = c2 and (1/2)ab = d2. (In other words, if
there is a rational right triangle with area 1 then there is a Pythagorean triangle whose area is a
perfect square. The converse is true as well.) Clearing the denominator in the second equation,

a2 + b2 = c2, ab = 2d2. (6.1)

We will show (6.1) has no positive integer solutions.
Assume there is a solution to (6.1) in positive integers. Let’s show there is then a solution

where a and b are relatively prime. Set g = (a, b), so g|a and g|b. Then g2|c2 and g2|2d2, so g|c
and g|d (why?). Divide a, b, c, and d by g to get another 4-tuple of positive integers satisfying (6.1)
with (a, b) = 1. So we may now focus on showing (6.1) has no solution in positive integers with
the extra condition that (a, b) = 1.

We will do this using Fermat’s method of descent: construct a new 4-tuple of positive integers
a′, b′, c′, d′ satisfying (6.1) with (a′, b′) = 1 and 0 < c′ < c. Repeating this enough times, we
reach a contradiction. Several times in the descent process we will use the following (or minor
variations on it): two positive relatively prime integers whose product is a perfect square must each
be perfect squares.

Now we start the descent. Since ab = 2d2 and a and b are relatively prime, a or b is even but
not both. Then c2 = a2 + b2 is odd, so c is odd. Since ab is twice a square, (a, b) = 1, and a and
b are positive, one is a square and the other is twice a square. The roles of a and b are symmetric,
so without loss of generality a is even and b is odd. Then

a = 2k2, b = `2

for some positive integers k and `, with ` odd (because b is odd). The first equation in (6.1) now
looks like 4k4 + b2 = c2, so c+b

2
c−b
2

= k4. Because b and c are both odd and relatively prime,
(c+ b)/2 and (c− b)/2 are relatively prime. Therefore

c+ b

2
= r4,

c− b
2

= s4

for some relatively prime positive integers r and s. Solve for b and c by adding and subtracting
these equations:

b = r4 − s4, c = r4 + s4,

so `2 = b = (r2 +s2)(r2−s2). The factors r2 +s2 and r2−s2 are relatively prime: any common
factor would be odd (since ` is odd) and divides the sum 2r2 and the difference 2s2, so is a factor
of (r2, s2) = 1. Since the product of r2 + s2 and r2 − s2 is an odd square and one of these is
positive, the other is positive and

r2 + s2 = t2, r2 − s2 = u2 (6.2)
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for odd positive integers t and u which are relatively prime. Since u2 ≡ 1 mod 4, r2 − s2 ≡
1 mod 4, which forces r to be odd and s to be even. Solving for r2 in (6.2),

r2 =
t2 + u2

2
=

„
t+ u

2

«2

+

„
t− u

2

«2

, (6.3)

where (t± u)/2 ∈ Z since t and u are odd.
Equation (6.3) will give us a “smaller” version of (6.1). Setting

a′ =
t+ u

2
, b′ =

t− u
2

, c′ = r,

we have a′2 + b′2 = c′2. From (t, u) = 1 we get (a′, b′) = 1. Moreover, using (6.2), a′b′ =
(t2 − u2)/4 = 2s2/4 = 2(s/2)2. Let d′ = s/2 ∈ Z, so we have a new solution (a′, b′, c′, d′) to
(6.1). Since 0 < c′ = r ≤ r4 < r4 + s4 = c, by descent we get a contradiction. 2

Theorem 2 leads to a weird proof that
√

2 is irrational. If
√

2 were rational then
√

2,
√

2, and
2 would be the sides of a rational right triangle with area 1. This is a contradiction of 1 not being a
congruent number!

6.3 Relation to Arithmetic Progressions of Three Squares
The three squares 1, 25, and 49 form an arithmetic progression with common difference 24. The
squarefree part of 24 is 6. This is related to 6 being a congruent number, by the following theorem.

Theorem 3. Let n > 0. There is a one-to-one correspondence between right triangles with area
n and 3-term arithmetic progressions of squares with common difference n: the sets

{(a, b, c) : a2 + b2 = c2, (1/2)ab = n}, {(r, s, t) : s2 − r2 = n, t2 − s2 = n}

are in one-to-one correspondence by

(a, b, c) 7→ ((b− a)/2, c/2, (b+ a)/2), (r, s, t) 7→ (t− r, t+ r, 2s).

Proof. It is left to the reader to check the indicated functions take values in the indicated sets and
that the correspondences are inverses of one another: if you start with an (a, b, c) and make an
(r, s, t) from it, and then form an (a′, b′, c′) from this (r, s, t), you get back the original (a, b, c).
Similarly, starting with an (r, s, t), producing an (a, b, c) from it and then producing an (r′, s′, t′)
from that returns the same (r, s, t) you started with. 2

How could the correspondence in Theorem 3 be discovered? When s2−r2 = n and t2−s2 =
n, adding gives t2−r2 = 2n, so (t−r)(t+r) = 2n. This suggests using a = t−r and b = t+r.
Then a2 + b2 = 2(t2 + r2) = 2(2s2) = (2s)2, so use c = 2s.

When n > 0 is rational, the correspondence in Theorem 3 preserves rationality and pos-
itivity/monotonicity: (a, b, c) is a rational triple if and only if (r, s, t) is a rational triple, and
0 < a < b < c if and only if 0 < r < s < t. Therefore, n is congruent if and only if there
is a rational square s2 such that s2 − n and s2 + n are also squares. Note the correspondence in
Theorem 3 involves not the squares in arithmetic progression but their square roots r, s, and t.

Example 4. For n = 6, using (a, b, c) = (3, 4, 5) in Theorem 3 produces (r, s, t) = (1/2, 5/2,
7/2), whose termwise squares are the arithmetic progression 1/4, 25/4, 49/4 with common dif-
ference 6.

Example 5. Taking n = 5 and (a, b, c) = (3/2, 20/3, 41/6), the correspondence in Theorem 3
yields (r, s, t) = (31/12, 41/12, 49/12): the rational squares (31/12)2, (41/12)2, (49/12)2 are
an arithmetic progression with common difference 5.

Example 6. Since Fermat showed 1 and 2 are not congruent numbers, there is no arithmetic pro-
gression of 3 rational squares with common difference 1 or 2 (or, more generally, common differ-
ence a nonzero square or twice a nonzero square).
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We now can explain the origin of the peculiar name “congruent number.” Fibonacci, in his
book Liber Quadratorum (Book of Squares) from 1225, called an integer n a congruum if there
is an integer x such that x2 ± n are both squares. This means x2 − n, x2, x2 + n is a 3-term
arithmetic progression of squares. Fibonacci’s motivation for writing his book was the study of
3-term arithmetic progressions of integral (rather than rational) squares. Both words congruum and
congruence come from the Latin congruere, which means “to meet together” (to congregate!). A
congruum is a number related to three integer squares in a kind of agreement (having a common
difference). Considering a congruum multiplied by rational squares (e.g., 24 · (1/2)2 = 6) gives
the congruent numbers.

6.4 The Curve y2 = x3 − n2x
Whether or not n is congruent is related to solvability of pairs of equations: first, by definition we
need to solve a2 + b2 = c2 and (1/2)ab = n in positive rational numbers a, b, and c. In Section
6.3, we saw this is equivalent to solving a second pair of equations in positive rational numbers:
s2 − r2 = n and t2 − s2 = n. It turns out that the congruent number property is also equivalent to
(nontrivial) rational solvability of the single equation y2 = x3 − n2x.

This equation has three obvious rational solutions: (0, 0), (n, 0), and (−n, 0). These are the
solutions with y = 0.

Theorem 7. For n > 0, there is a one-to-one correspondence between the following two sets:

{(a, b, c) : a2 + b2 = c2, (1/2)ab = n}, {(x, y) : y2 = x3 − n2x, y 6= 0}.

Mutually inverse correspondences between these sets are

(a, b, c) 7→
„

nb

c− a ,
2n2

c− a

«
, (x, y) 7→

„
x2 − n2

y
,

2nx

y
,
x2 + n2

y

«
.

Proof. This is a direct calculation left to the reader. We divide by c − a in the first formula, and
c 6= a automatically since if c = a then b = 0, but (1/2)ab = n is nonzero. Restricting y to a
nonzero value is necessary since we divide by y in the second formula. 2
Remark. It is of course natural to wonder how the correspondence in Theorem 7 could be discov-
ered in the first place. See the appendix.

The correspondence in Theorem 7 preserves positivity: if a, b, and c are positive then (c −
a)(c+ a) = b2 > 0, so c− a is positive and thus x = nb/(c− a) > 0 and y = 2n2/(c− a) > 0.
In the other direction, if x and y are positive then from y2 = x3 − n2x = x(x2 − n2) we see
x2 − n2 has to be positive, so a, b, and c are all positive. Also, for rational n > 0, (a, b, c) is
rational if and only if (x, y) is rational. Any solution to a2 + b2 = c2 and (1/2)ab = n needs
a and b to have the same sign (since ab = 2n > 0), and by a sign adjustment there is a rational
solution with a, b, and c all positive if there is any rational solution at all. Therefore a rational
number n > 0 is congruent if and only if the equation y2 = x3−n2x has a rational solution (x, y)
with y 6= 0; we don’t have to pay attention to whether or not x and y are positive.

A positive rational number n is not congruent if and only if the only rational solutions to
y2 = x3 − n2x have y = 0: (0, 0), (n, 0), and (−n, 0). For example, since 1 is not congruent
(Theorem 2), the only rational solutions to y2 = x3 − x have y = 0.

Example 8. Since 6 is the area of a (3, 4, 5) right triangle, the equation y2 = x3 − 36x has a
rational solution with y 6= 0. The solution corresponding to the (3, 4, 5) right triangle by Theorem
7 is (x, y) = (12, 36). See Figure 6.2.

Example 9. From the rational right triangle (3/2, 20/3, 41/6) with area 5, Theorem 7 gives us
a rational solution to y2 = x3 − 25x: (x, y) = (25/4, 75/8). If we allow sign changes on the
coordinates of (3/2, 20/3, 41/6), Theorem 7 will give us new rational solutions to y2 = x3−25x.
Using the triples of the form (±3/2,±20/3,±41/6) where the first two coordinates have the same
sign, the new solutions to the equation y2 = x3−25x are collected in Table 6.2 and they are plotted
on y2 = x3 − 25x in Figure 6.3.
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(12, 36)

Figure 6.2: The rational point (12, 36) on y2 = x3 − 36x.

Signs on (3/2, 20/3, 41/6) (x, y)
(+,+,+) (25/4, 75/8)
(+,+,−) (−4,−6)
(−,−,+) (−4, 6)
(−,−,−) (25/4,−75/8)

Table 6.2: Solutions to y2 = x3 − 25x.

Example 10. A rational solution to y2 = x3 − 49x is (25, 120). Theorem 7 produces from this
solution the rational right triangle (24/5, 35/12, 337/60) with area 7, which we met already in
Figure 6.1.

Example 11. In Table 6.1 we found two rational right triangles with area 210: (35, 12, 37) and
(21, 20, 29). Using Theorem 7, these triangles lead to two rational solutions to y2 = x3 − 2102x:
(1260, 44100) and (525, 11025), respectively. In Figure 6.4, the line through (1260, 44100) and
(525, 11025) meets the curve y2 = x3 − 2102x in a third point (240,−1800). Its second coordi-
nate is negative, but the point (240, 1800) is also on that curve, and it leads by Theorem 7 to the
new rational right triangle (15/2, 56, 113/2) with area 210.

Example 12. Suppose (a, b, c) satisfies a2 + b2 = c2 and (1/2)ab = n. Such a solution gives rise
to seven additional ones: (−a,−b,−c) and

(a, b,−c), (−a,−b, c), (b, a, c), (b, a,−c), (−b,−a, c), (−b,−a,−c).

These algebraic modifications have a geometric interpretation in terms of constructing new points
from old ones on the curve y2 = x3 − n2x using secant lines. Say (a, b, c) corresponds to (x, y)
by Theorem 7, so y 6= 0. From the point (x, y) on the curve, we can automatically generate a
second point: (x,−y). This corresponds by Theorem 7 to (−a,−b,−c). What points on the curve
correspond to the six remaining algebraic modifications above?
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(−4, 6)

(−4,−6)

(
25
4

, 75
8

)
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25
4

,− 75
8

)

Figure 6.3: Some rational points on y2 = x3 − 25x.

Well, there are three obvious points on the curve which have nothing to do with our particular
(x, y), namely (0, 0), (n, 0), and (−n, 0). The line through (x, y) and (0, 0) meets the curve in
the point (−n2/x,−n2y/x2), which corresponds by Theorem 7 to (a, b,−c). More generally, the
three lines through (x, y) and each of (0, 0), (n, 0), and (−n, 0) meet the curve in three additional
points, and their reflections across the x-axis are an additional three points (which are where the
lines through (x,−y) and each of (0, 0), (n, 0), and (−n, 0) meet the curve). See Table 6.3 and
Figure 6.5. The corresponding triples from Theorem 7 are collected in Table 6.4 and are exactly
what we were looking for.

First Point Second Point Third Point
(x, y) (0, 0) (−n2/x,−n2y/x2)

(x,−y) (0, 0) (−n2/x, n2y/x2)
(x, y) (n, 0) (n(x+ n)/(x− n), 2n2y/(x− n)2)

(x,−y) (n, 0) (n(x+ n)/(x− n),−2n2y/(x− n)2)
(x, y) (−n, 0) (−n(x− n)/(x+ n), 2n2y/(x+ n)2)

(x,−y) (−n, 0) (−n(x− n)/(x+ n),−2n2y/(x+ n)2)

Table 6.3: Third Intersection Point of a Line with y2 = x3 − n2x.

We have seen that the following properties of a positive rational number n are equivalent:

• there is a rational right triangle with area n,

• there is a 3-term arithmetic progression of rational squares with common difference n,

• there is a rational solution to y2 = x3 − n2x with y 6= 0.
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(240,−1800)

(525, 11025)

(1260, 44100)

Figure 6.4: New rational point on y2 = x3 − 2102x from a secant line. Not drawn to scale.

Pair Triple
(x, y) (a, b, c)

(x,−y) (−a,−b,−c)
(−n2/x,−n2y/x2) (a, b,−c)
(−n2/x, n2y/x2) (−a,−b, c)

(n(x+ n)/(x− n), 2n2y/(x− n)2) (b, a, c)
(n(x+ n)/(x− n),−2n2y/(x− n)2) (−b,−a,−c)
(−n(x− n)/(x+ n), 2n2y/(x+ n)2) (−b,−a, c)

(−n(x− n)/(x+ n),−2n2y/(x+ n)2) (b, a,−c)

Table 6.4: Theorem 7 and Sign Changes.

The viewpoint of the equation y2 = x3 − n2x lets us use the geometry of the curve to do
something striking: produce a new rational right triangle with area n from two known triangles.
We saw an instance of this in Example 11. Notice there is nothing in the definition of a congruent
number which suggests it is possible to produce a new rational right triangle with area n from two
known ones. We can even find a new rational right triangle with area n from just one such triangle,
by using a tangent line in place of a secant line. Given a rational point (x0, y0) on y2 = x3 − n2x
with y0 6= 0, draw the tangent line to this curve at the point (x0, y0). This line will meet the
curve in a second rational point, and that can be converted into a new rational right triangle with
area n using the correspondence of Theorem 7 (and removing any signs on a, b, c if they turn out
negative.)

Example 13. In Example 11, we found a third rational right triangle from two known ones by
intersecting the line through the points (1260, 44100) and (525, 11025) with y2 = x3 − 2102x.
We can find a new rational right triangle with area 210 from the single point (1260, 44100) by
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P0

P1

P2

P3

P4

P5

P6

P7

(−n, 0)

(0, 0)

(n, 0)

Figure 6.5: Intersecting y2 = x3 − n2x with lines through P0 and (0, 0), (n, 0), (−n, 0), and
reflected points.

using the tangent line to y2 = x3 − 2102x at (1260, 44100). The tangent is

y =
107

2
x− 23310

and it meets the curve in the second point (1369/4,−39997/8). See Figure 6.6. By Theorem 7,
this point corresponds to (a, b, c) = (−1081/74,−31080/1081,−2579761/79994), which after
removing signs is the rational right triangle (1081/74, 31080/1081, 2579761/79994), whose area
is 210.

Example 14. The (3, 4, 5) right triangle with area 6 corresponds to the point (12, 36) on the curve
y2 = x3−36x, as we saw already in Example 8. The tangent line to this curve at the point (12, 36)
is y = (11/2)x − 30, which meets the curve in the second point (25/4, 35/8) = (6.25, 4.375).
Let’s repeat the tangent process on this new point. The tangent line to the curve at (25/4, 35/8)
has equation

y =
1299

140
x− 6005

112
,

which meets the curve in the new point„
1442401

19600
,

1726556399

2744000

«
≈ (73.59, 629.21). (6.4)

This is illustrated in Figure 6.7, where the second tangent line meets the curve outside the range of
the picture.1 A larger view, showing where the second tangent line meets the curve, is in Figure
6.8. (The axes in Figures 6.7 and 6.8 are not given equal scales, which is why the same tangent line
in the two figures appears to have different slopes.) Using Theorem 7, (25/4, 35/8) corresponds

1The inflection points on the curve in Figure 6.7, for x > 0, occur where x =
q

12(3 + 2
√

3) ≈ 8.8.
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(1260, 44100)

(
1369

4
,− 39997

8

)

Figure 6.6: New rational point on y2 = x3 − 2102x from a tangent line. Not drawn to scale.

to the rational right triangle with area 6 having sides (7/10, 120/7, 1201/70). The rational right
triangle with area 6 corresponding to the point in (6.4) has sides„

1437599

168140
,

2017680

1437599
,

2094350404801

241717895860

«
. (6.5)

Armed with 3 rational right triangles with area 6, we can find 3 arithmetic progressions of
rational squares using Theorem 3. The (3, 4, 5) triangle, as we saw in Example 4, yields the
arithmetic progression 1/4, 25/4, 49/4. The (7/10, 120/7, 1201/70) right triangle yields the
arithmetic progression „

1151

140

«2

,

„
1201

140

«2

,

„
1249

140

«2

.

The right triangle with sides in (6.5) yields the arithmetic progression„
1727438169601

483435791720

«2

,

„
2094350404801

483435791720

«2

,

„
77611083871

483435791720

«2

.

All of these arithmetic progressions of squares have common difference 6.

Remark. The secant method is a way to “add” points and the tangent method is essentially the
special case of “doubling” a point. These tangent and secant constructions can be used to give the
rational points on y2 = x3 − n2x the structure of an abelian group in which, for rational n > 0,
any rational point (x, y) with y 6= 0 has infinite order. (This is not at all obvious.) Therefore
the curve y2 = x3 − n2x has infinitely many rational points as soon as it has just one rational
point with y 6= 0, so there are infinitely many rational right triangles with area n provided there is
one example and there are infinitely many 3-term arithmetic progressions of rational squares with
common difference n provided there is one example. In terms of Table 6.1, this means any area
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(12, 36)

(
25
4

, 35
8

)

Figure 6.7: Close view of successive tangents to y2 = x3 − 36x starting from (12, 36).

arising in the table at least once will arise in the table infinitely often.2

The importance of thinking about congruent numbers in terms of the curves y2 = x3 − n2x
goes far beyond this interesting construction of new rational right triangles with area n from old
ones: this viewpoint in fact leads to a tentative solution of the whole congruent number problem! In
1983, Tunnell [Tu] used arithmetic properties of y2 = x3 − n2x (which is a particular example of
an elliptic curve) to discover a previously unknown elementary necessary condition on congruent
numbers and he was able to prove the condition is sufficient if a certain other conjecture is true.

Theorem 15 (Tunnell). Let n be a squarefree positive integer. Set

f(n) = #{(x, y, z) ∈ Z3 : x2 + 2y2 + 8z2 = n},
g(n) = #{(x, y, z) ∈ Z3 : x2 + 2y2 + 32z2 = n},
h(n) = #{(x, y, z) ∈ Z3 : x2 + 4y2 + 8z2 = n/2},
k(n) = #{(x, y, z) ∈ Z3 : x2 + 4y2 + 32z2 = n/2}.

For odd n, if n is congruent then f(n) = 2g(n). For even n, if n is congruent then h(n) = 2k(n).
Moreover, if the weak Birch and Swinnerton–Dyer conjecture is true for the curve y2 = x3 − n2x
then the converse of both implications is true: f(n) = 2g(n) implies n is congruent when n is odd
and h(n) = 2k(n) implies n is congruent when n is even.

The weak Birch and Swinnerton–Dyer conjecture, which we won’t describe here, is one of
the most important conjectures in mathematics. (It is on the list of Clay Millennium Prize prob-
lems.) Several years before Tunnell proved his theorem, Stephens [St] showed the weak Birch and
Swinnerton–Dyer conjecture implies any positive integer n ≡ 5, 6, 7 mod 8 is a congruent num-
ber. Tunnell’s achievement was discovering the enumerative criterion for congruent numbers and

2The two rational points on y2 = x3 − 2102x which correspond to the repetition of 210 in Table 6.1 are
independent in the group law: they do not have a common multiple.
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Figure 6.8: Far view of successive tangents to y2 = x3 − 36x starting from (12, 36).

its relation to the weak Birch and Swinnerton–Dyer conjecture. For background on the ideas in
Tunnell’s theorem, see [He] and [Ko]. In [Kn, pp. 112–114], the particular case of prime congruent
numbers is considered.

Tunnell’s theorem provides an unconditional method of proving a squarefree positive inte-
ger n is not congruent (show f(n) 6= 2g(n) or h(n) 6= 2k(n), depending on the parity of n),
and a conditional method of proving n is congruent (conditional, that is, on the weak Birch and
Swinnerton-Dyer conjecture for the curve y2 = x3 − n2x).

Example 16. Since f(1) = g(1) = 2 and f(3) = g(3) = 4, we have f(n) 6= 2g(n) for n = 1
and 3, so Tunnell’s criterion shows 1 and 3 are not congruent.

Example 17. Since h(2) = k(2) = 2, we have h(2) 6= 2k(2), so Tunnell’s criterion shows 2 is
not congruent.

Example 18. Since f(5) = g(5) = 0 and f(7) = g(7) = 0, we have f(n) = 2g(n) for
n = 5 and 7. Tunnell’s theorem says 5 and 7 are congruent if the weak Birch and Swinnerton-Dyer
conjecture is true for y2 = x3 − 25x and y2 = x3 − 49x. Unconditionally, we saw earlier that 5
and 7 are congruent.

Example 19. Since h(10) = 4 and k(10) = 4, h(10) 6= 2k(10), so Tunnell’s theorem says 10 is
not a congruent number.

Example 20. We will show (conditionally) that any positive integer n satisfying n ≡ 5, 6, 7 mod 8
is a congruent number. Writing n = a2b with b squarefree, a has to be odd so n ≡ b mod 8. Thus
we may suppose n is squarefree. Tunnell’s theorem tells us to check that f(n) = 2g(n) when
n ≡ 5, 7 mod 8 and h(n) = 2k(n) when n ≡ 6 mod 8. Since x2 + 2y2 6≡ 5, 7 mod 8 for
any integers x and y, f(n) = 0 and g(n) = 0 when n ≡ 5, 7 mod 8, so f(n) = 2g(n). When
n ≡ 6 mod 8 we have n/2 ≡ 3 mod 4, so x2 6≡ n/2 mod 4 for any integer x. Therefore
h(n) = 0 and k(n) = 0 when n ≡ 6 mod 8, so h(n) = 2k(n). This shows n is congruent if the
weak Birch and Swinnerton-Dyer conjecture is true for y2 = x3 − n2x.
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Appendices
6.A Discovering Theorem 7
Fix a real number n 6= 0. The real solutions (a, b, c) to each of the equations

a2 + b2 = c2,
1

2
ab = n, (6.6)

describe a surface in R3, so it is reasonable to expect these two surfaces intersect in a curve. We
want an equation for that curve, which will be y2 = x3 − n2x in the right choice of coordinates.
Two approaches will be described, one algebraic and the other geometric. The sign on n will be
irrelevant, so we allow any n 6= 0 rather than n > 0.

The algebra is simplified by introducing a cross-term in the equation a2 + b2 = c2. Let
c = t+ a, which turns this equation into b2 = t2 + 2at, or equivalently

2at = b2 − t2. (6.7)

Since ab = 2n is nonzero, neither a nor b is 0, so we can write a = 2n/b and substitute it into
(6.7):

4nt

b
= b2 − t2.

Multiplying through by b makes this

4nt = b3 − t2b.

Divide by t3 (t 6= 0, as otherwise a = c and then b = 0, but ab = 2n 6= 0):

4n

t2
=

„
b

t

«3

− b

t
.

Multiply through by n3: „
2n2

t

«2

=

„
nb

t

«3

− n2

„
nb

t

«
.

Set x = nb/t and y = 2n2/t, so y2 = x3 − n2x. Then x = nb/(c− a) and y = 2n2/(c− a), as
in Theorem 7.

We now turn to a geometric explanation of Theorem 7, taking greater advantage of the inter-
pretation of the two equations in (6.6) as surfaces which meet in a curve. Rather than working
with the equations as surfaces in R3, we will work in the projective space P3(R) by homogeniz-
ing the two equations. This doesn’t change the first equation in (6.6), but makes the second one
(1/2)ab = nd2.

Letting [a, b, c, d] be the homogeneous coordinates of a typical point in P3(R), the two equa-
tions

a2 + b2 = c2,
1

2
ab = nd2 (6.8)

each define surfaces in P3(R). Let C be the intersection of these surfaces (a curve). There are
points on C with b = 0, namely [a, b, c, d] = [1, 0,±1, 0]. These points are not in the usual affine
space inside P3(R), and we will use one of these points in a geometric construction.

Let’s project through the point P := [1, 0, 1, 0] to map C to the plane

Π := {[0, b, c, d]}
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and find the equation for the image of C in this plane. The point P lies on C and not in Π. For each
Q ∈ C other than P , the line PQ in P3(R) meets Π in a unique point. Call this point f(Q). When
Q = P , intersect the tangent line to C at P with the plane Π to define f(P ). We have defined a
function f : C → Π.

Computing a formula for f necessitates a certain amount of computation to see what happens.
Suppose first that Q = [a, b, c, d] is not P . The line through P and Q is the set of points

[λ+ µa, µb, λ+ µc, µd],

which meets Π where λ = −µa, making

f(Q) = [0, µb, µ(c− a), µd] = [0, b, c− a, d].

As for f(P ), the tangent planes to each of the surfaces a2 + b2 = c2 and (1/2)ab = nd2 in P3(R)
at the point P are the planes a = c and b = 0, so the tangent line at P is the set of points

[a, 0, a, d],

which meets Π in [0, 0, 0, 1], so f(P ) = [0, 0, 0, 1]. Thus

f([a, b, c, d]) =

(
[0, b, c− a, d], if [a, b, c, d] 6= [1, 0, 1, 0],

[0, 0, 0, 1], if [a, b, c, d] = [1, 0, 1, 0].

As an exercise, check f is injective. (Hint: Since (1/2)ab = nd2, b and d determine a if b 6= 0.)
All points in the plane Π have first coordinate 0. Identify Π with P2(R) by dropping this

coordinate, which turns f into the function g : C → P2(R) where

g([a, b, c, d]) =

(
[b, a− c, d], if [a, b, c, d] 6= [1, 0, 1, 0],

[0, 0, 1], if [a, b, c, d] = [1, 0, 1, 0].
(6.9)

See Figure 6.9, where P is located “at infinity” in a vertical direction.
We have mapped our curve C to the projective plane P2(R). What is an equation for the image

g(C)? For Q = [a, b, c, d] on C, write g(Q) = [x, z, y]. (This ordering of the coordinates will
make formulas come out close to the expected way more quickly.) When Q 6= [1, 0, 1, 0] (that is,
a 6= c), (6.9) says we can use x = b, y = d, and z = c − a 6= 0.3 The equations in (6.8) become
a2 + x2 = (a+ z)2 and (1/2)ax = ny2, so

x2 = 2az + z2, ax = 2ny2.

Since z 6= 0, we can solve for a in the first equation, so a is determined by x, y, and z. Multiplying
the first equation by x and the second by 2z, x3 = 2axz + xz2 = 4ny2z + xz2. Thus

4ny2z = x3 − xz2.

Set X = x, Y = 2ny, and Z = z/n to find Y 2Z = X3 − n2XZ2, which is the homogeneous
form of Y 2 = X3 − n2X .

Tracing this correspondence out explicitly from the start, if we begin with [a, b, c, d] on C
where d 6= 0 (the standard affine part of C), its image [X,Z, Y ] in P2(R) ish

b,
c− a
n

, 2nd
i

= [nb, c− a, 2n2d] =

»
nb

c− a , 1,
2n2d

c− a

–
.

3The cross term t = c− a in the algebraic method is precisely z, so now we get a geometric interpretation
of this cross term as a coordinate in a projection map to a plane.
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C
Π

C

Figure 6.9: Projection in (6.9) through point P at infinity from curve C to Π ∼= P2(R).

Since d 6= 0 implies a 6= c, using inhomogeneous coordinates with middle coordinate 1 in P2(R)
the point (a, b, c) goes to (nb/(c− a), 2n2/(c− a)), which is the transformation in Theorem 7.

As an exercise in these techniques, consider the problem of classifying triangles with a given
area n > 0 and a given angle θ. (Taking θ = π/2 is the congruent number problem.) Let a, b, c be
the side lengths of the triangle, with c the length of the edge opposite the angle θ. The equations in
(6.6) are replaced by

a2 + b2 − 2ab cos θ = c2,
1

2
ab sin θ = n. (6.10)

(If there is a solution with rational a, b, c, and n then cos θ and sin θ must be rational.) Show
the solutions (a, b, c) of (6.10) are in one-to-one correspondence with the solutions (x, y) of the
equation

y2 = x3 +
2n cos θ

sin θ
x2 − n2x = x

„
x+ n

cos θ + 1

sin θ

«„
x+ n

cos θ − 1

sin θ

«
,

with y 6= 0. The correspondence should specialize to that in Theorem 7 when θ = π/2.

6.B Other Diophantine Equations
In Table 6.5, the first two columns show how to convert the sides (a, b, c) of a rational right triangle
with area 1 into a positive rational solution of the equation y2 = x4 − 1 and conversely. (These
correspondences are not inverses, but they do show a positive rational solution in the first column
leads to a positive rational solution in the second column, and conversely.) The last two columns
give a (bijective) correspondence between rational right triangles with area 2 and positive rational
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solutions of y2 = x4 + 1. So showing 1 and 2 are not congruent numbers is the same as showing
the equations y2 = x4 ± 1 don’t have solutions in positive rational numbers.

a2 + b2 = c2, y2 = x4 − 1 a2 + b2 = c2, y2 = x4 + 1
1
2
ab = 1 1

2
ab = 2

x = c/2 a = y/x x = a/2 a = 2x
y = |a2 − b2|/4 b = 2x/y y = ac/4 b = 2/x

c = (x4 + 1)/xy c = 2y/x

Table 6.5: Correspondences between rational right triangles with area 1 or 2 and y2 = x4 ± 1.

A positive rational solution (x, y) to y2 = x4±1 can be turned into a positive integral solution
(u, v, w) ofw2 = u4±v4 by clearing a common denominator, and we can go in reverse by dividing
by v4. That 1 and 2 are not congruent is therefore the same as the equations w2 = u4 ± v4 having
no positive integer solutions. The reader is referred to [Bu, pp. 252–256] for a proof by descent
that w2 = u4 ± v4 has no positive integer solutions.

That the congruent number property for 1 and 2 is equivalent to the solvability of a single
equation in positive rational numbers (y2 = x4 − 1 for 1 and y2 = x4 + 1 for 2) generalizes:
n is congruent if and only if y2 = x4 − n2 has a positive rational solution and if and only if
y2 = x4 + 4n2 has a positive rational solution. See Table 6.6, where the first two columns turn
rational right triangles with area n into positive rational solutions of y2 = x4 − n2 and conversely,
and the last two columns do the same with y2 = x4 + 4n2. As in Table 6.5, the correspondences
in the first two columns of Table 6.6 are not inverses of each other, but the correspondences in the
last two columns are inverses. (When n = 2 the equation in Table 6.6 is y2 = x4 + 16 rather than
y2 = x4 + 1 as in Table 6.5. We can easily pass from the former to the latter by replacing y with
4y and x with 2x.) The equivalence of n being congruent with y2 = x4 − n2 having a positive
rational solution is due to Lucas (1877).

a2 + b2 = c2, y2 = x4 − n2 a2 + b2 = c2, y2 = x4 + 4n2

1
2
ab = n 1

2
ab = n

x = c/2 a = y/x x = a a = x
y = |a2 − b2|/4 b = 2nx/y y = ac b = 2n/x

c = (x4 + n2)/xy c = y/x

Table 6.6: More correspondences between rational right triangles and Diophantine equations.

We pulled the equations y2 = x4 − n2 and y2 = x4 + 4n2 out of nowhere. How could they
be discovered? The arithmetic progression viewpoint on congruent numbers (Theorem 3) leads to
one of them. If n is congruent, there are rational squares r2, s2, and t2 with s2 − r2 = n and
t2 − s2 = n. Then r2 = s2 − n and t2 = s2 + n, so multiplication gives (rt)2 = s4 − n2 and
we’ve solved y2 = x4 − n2 in positive rational numbers.
Remark. For t 6= 0, solutions to y2 = x4+t and to Y 2 = X3−4tX are in a one-to-one correspon-
dence, by (x, y) 7→ (2t/(y − x2), 4tx/(y − x2)) and (X,Y ) 7→ (Y/2X, (Y 2 + 8tX)/4X2). In
particular, solutions to y2 = x4−n2 correspond to solutions to Y 2 = X3 + (2n)2X , which is not
the equation Y 2 = X3−(2n)2X and thus isn’t related to whether or not 2n is a congruent number.
Explicit examples show the lack of a general connection between n and 2n being congruent: 5 is
congruent but 10 is not, while 3 is not congruent but 6 is.
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For p a prime, consider (Z/pZ)×, the multiplicative group of the nonzero integers modulo
p. We know that exactly half of the elements are squares, and want to find them. The Legendre
symbol

`
a
p

´
is defined to be 1 if a is a square in (Z/pZ)×, −1 otherwise. Besides simply squaring

the integers from 1 to p− 1 to see if
`
a
p

´
= 1, we can also use Euler’s Criterion, which states that`

a
p

´
= a

p−1
2 mod p. However, the most elegant way uses the law of quadratic reciprocity, first

proven by Gauss. It states that if p and q are odd primes then„
q

p

«„
p

q

«
= (−1)

q−1
2 ·

p−1
2 .

We will prove this result using elementary group theory. Consider the group G = (Z/pZ)× ×
(Z/qZ)× for p, q odd primes. Note that A = {(1, 1), (−1,−1)} is a normal subgroup of G, and
let H = G/A be the quotient group. We will find two equivalent expressions for the product of all
elements of H by considering coset representatives for A.

Any (a, b) ∈ G can be written uniquely as (a,±b′) where 1 ≤ a ≤ p− 1 and 1 ≤ b′ ≤ q−1
2

.
Since negating a does not change the possibilities for the first coordinate, S = {(x, y) | 1 ≤ x ≤
p− 1, 1 ≤ y ≤ q−1

2
} is a set of coset representatives for A. Taking the product of all elements of

this set gives “
(p− 1)!

q−1
2 ,
`
q−1
2

´
!p−1

”
but we know that in Z/qZ

( q−1
2

)!2 = (−1)
q−1
2 (q − 1)!

and therefore

( q−1
2

)!p−1 = (( q−1
2

)!2)
p−1
2 =

“
(−1)

q−1
2 (q − 1)!

” p−1
2

= (−1)
q−1
2 ·

p−1
2 (q − 1)!

p−1
2 .

So the product can be rewritten as“
(p− 1)!

q−1
2 , (−1)

q−1
2 ·

p−1
2 (q − 1)!

p−1
2

”
.

†Currently, Tim is in his junior year at Livingston High School in Livingston, New Jersey. Largely influ-
enced by his time at PROMYS, his mathematical interests have been oriented towards number theory along
with algebra, though he has made attempts at studying analysis independently more recently as well. His first
experience with extracurricular study was a deeper exploration of calculus, but his interests have shifted signif-
icantly to more foundational branches, including abstract algebra and set theory. Tim is fascinated with elegant
proofs of simple or well-known theorems—a passion that resulted in the creation of this proof. In the next few
years, he hopes to narrow his interests and pursue mathematics in college and beyond.
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Next, we apply the Chinese Remainder Theorem to find another set of coset representatives,
namely the set

T =
˘

(k mod p, k mod q) | k = 1, 2, · · · , pq−1
2

; (k, pq) = 1
¯
.

Clearly under multiplication by (−1,−1) the elements of Z/pqZ over pq−1
2

are included, and
generate all elements of G that are not in T . Therefore, this is a second set of coset representatives.

Denote the product of these ordered pairs by (r, s). Then, r is the product of all k taken modulo
p, and s is the same product but modulo q. Since we require (k, pq) = 1, to calculate r we may
exclude all multiples of p, then divide out all multiples of q:

r =

 
p−1Y
i=1

i

! 
p−1Y
i=1

p+ i

!
· · ·

 
p−1Y
i=1

„
q − 1

2
− 1

«
p+ i

!0B@ p−1
2Y
i=1

q − 1

2
p+ i

1CA
(1 · q)(2 · q) · · ·

`
p−1
2
· q
´

By manipulating the terms and applying Euler’s Criterion, we find:

r =
(p− 1)!

q−1
2
`
p−1
2

´
!

q
p−1
2
`
p−1
2

´
!

=
(p− 1)!

q−1
2

q
p−1
2

=
(p− 1)!

q−1
2`

q
p

´ = (p− 1)!
q−1
2

„
q

p

«
We also have a symmetric expression for s:

s = (q − 1)!
p−1
2

„
p

q

«
So by equating this with the product from the previous calculation we find:“

(p− 1)!
q−1
2 , (−1)

q−1
2 ·

p−1
2 (q − 1)!

p−1
2

”
=

„
(p− 1)!

q−1
2

„
q

p

«
, (q − 1)!

p−1
2

„
p

q

««
Therefore, “

1, (−1)
q−1
2 ·

p−1
2

”
=

„„
q

p

«
,

„
p

q

««
.

Since we have been working in G/A, this is only accurate up to sign. But if we multiply the
components of the ordered pairs together having both negative will make no difference, so we have
the desired equation: „

q

p

«„
p

q

«
= (−1)

q−1
2 ·

p−1
2
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8.1 Introduction to percolation theory
Percolation theory was originally developed to model the flow of liquid through a disordered
porous medium. The classic example comes from coffee-making: If water is poured through coffee
grounds, we would like to find out what the wet portion of the grounds might look like.

We can model the material as a graph Λ, with vertex set V and edge set E. (We will be
concerned only with the case where Λ is undirected.) Each vertex is a particle of coffee, and edges
join vertices corresponding to adjacent particles. In the standard terminology of percolation theory,
vertices and edges are referred to as sites and bonds respectively. We can then model percolation
as a random binary function on the graph: In site percolation, each site is independently set to
be open or closed (wet or dry) with probability p; the open sites induce the open subgraph of
Λ. Bond percolation is defined analogously, the only modification being that we select a random
subset of open bonds of E. A choice of open and closed sites (or bonds) is called a (percolation)
configuration. Percolation theory is specifically concerned with the connected components of the
open subgraph, or open clusters — the wet portions of the coffee which are now sticking together.

For further background on this subject see Grimmett [Gr] and Bollobás and Riordan [BR].
Besides giving us insights into what happens inside our coffee-makers, percolation theory has been
applied to study earthquakes and fault patterns, groundwater flow in rock, reactions in evolving
porous media, random electrical networks, and semiconductors [Sa].

The goal of this article is to describe a surprising connection between the scaling limit of
percolation and conformal maps. This article assumes some knowledge of complex analysis (as in
[Ah] or [SS]) and basic probability theory.

8.1.1 Critical percolation probabilities
Let Pp denote the probability measure induced by percolation at probability p on the space of
subgraphs of Λ. (In simpler terms, for any event E which is determined by the states of any or all
of the sites in the graph — for example, the event that there is an infinite open cluster — Pp(E)
denotes the probability that E will occur if each site is chosen to be open at probability p.) For
x ∈ Λ we can consider Cx, the open cluster at x, which is the connected component of the open
subgraph containing x. (In particular, Cx = ∅ if and only if x is closed.) We define two quantities
of interest at x:

θx(p) = Pp(|Cx| =∞) and χx(p) = Ep(|Cx|),

where Ep denotes expectation with respect to Pp. θx and χx are nondecreasing in p. If Λ is a
connected graph, then for any x, y ∈ Λ, θx(p) and θy(p) must be both positive or both zero,

†Nike Sun, Harvard ’09, is a mathematics concentrator living in Winthrop House. She is also enrolled in a
concurrent masters program in statistics.
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and χx(p) and χy(p) must be both finite or both infinite. Therefore we can define two critical
probabilities for the graph Λ,

pH = inf{p : θx(p) > 0}, pT = inf{p : χx(p) =∞}.

(The subscript of pH refers to Hammersley while that of pT refers to Temperley.) If p > pH , at
every x ∈ Λ there is a positive probability that Cx is infinite; in particular, by the Kolmogorov 0-1
Law, an infinite connected component exists with probability 1 (see e.g. [Ro]).

We always have pT ≤ pH for a given percolation model; pT < pH can occur if, for some
values of p, |Cx| is finite with probability 1 but has a heavy-tailed distribution. Menshikov proves
that under some uniformity conditions on the structure of Λ, for p < pH the distribution of |Cx| has
an almost exponential tail, so that χx(p) must be finite; and this is enough to conclude pT = pH .
For example, pT = pH = 1/2 for Λ equal to Z2 or T (the triangular lattice) [BR]. We will see later
that the most interesting behavior occurs for models at critical probabilities — when the medium is
neither under- nor over-saturated.

8.1.2 Crossing probabilities in the scaling limit
For the remainder of this discussion, we will restrict ourselves to site percolation on a planar
lattice. Planar lattices all satisfy the conditions of Menshikov’s theorem, so their two critical prob-
abilities are equal, and we denote them both by pc. In particular, the main result of this section, due
to Smirnov, concerns the triangular lattice T , shown with its dual hexagonal lattice H in Figure
8.1. Site percolation on a lattice can be visualized as face percolation (the shaded hexagons) on its
dual.

Figure 8.1: Triangular lattice T , hexagonal
dual H

P1

P2

P3

P4

A1

A2

A3

A4

Figure 8.2: Open crossing ofD (dark) in lat-
tice δT

Let D ⊂ C be a simply connected, bounded domain, whose boundary is a Jordan curve Γ. Let
zi, 1 ≤ i ≤ 4, be distinct boundary points of D, appearing in this cyclic order as Γ is traversed
counterclockwise; then D4 = (D; z1, z2, z3, z4) is a 4-marked domain. Let Ai = Ai(D4) be the
arc of Γ from zi to zi+1, where the indices are taken modulo 4.

Let Λ be a planar lattice; we wish to analyze the structure of percolation on δΛ, the rescaled
lattice, within D4 as δ → 0. This is the notion of a scaling limit. By an open crossing of D
from A1 to A3 in δΛ, we mean an open path v0v1 · · · vt in δΛ such that v1, · · · , vt−1 ∈ D,
v0, vt /∈ D, and v0v1 meets A1 while vt−1vt meets A3; see Figure 8.2. Considering either site or
bond percolation on Λ, for δ > 0 and 0 < p < 1, we can then define

Pδ(D4,Λ, p) = Pp(D4 has an open crossing in δΛ).

We are then interested in limδ→0 Pδ(D4,Λ, p).
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In fact, for almost all values of p the limit is uninteresting: Menshikov’s theorem can be ap-
plied to show that for p < pc the limit is 0, and for p > pc the limit is 1. The only interesting
behavior occurs when p = pc; we therefore restrict ourselves to critical percolation, and denote
Pδ(D4,Λ) = Pδ(D4,Λ, pc), and π(D4,Λ) = limδ→0 Pδ(D4,Λ). Based on experiments, Lang-
lands, Pouliot, and Saint-Aubin [LPSA] made the following conjecture:

Conjecture 1 ([LPSA]). The limit π(D4,Λ) is defined, lies in (0, 1), and is conformally invariant:
If D4 = (D; z1, z2, z3, z4) and D′4 = (D′, z′1, z

′
2, z
′
3, z
′
4) are conformally equivalent 4-marked

domains (there is a conformal map ϕ : D → D′ which extends continuously to ∂D with Pi 7→ P ′i ),
then π(D4,Λ) = π(D′4,Λ).

To date this result has only been proven for the triangular lattice T , a fairly recent result due
to Smirnov [Sm, Sm]. We will discuss this result, and a more general result also due to Smirnov,
below. However, we first provide some motivation for why the scaling limit should be conformally
invariant.

8.2 Conformal invariance of planar Brownian motion
Brownian motion is the scaling limit of simple random walk on Z, the process which starts at
some integer and at each step moves by ±1 with equal probability, independently of all previous
steps. Brownian motion is a continuous stochastic process (Bt)t≥0 with normally distributed
increments (e.g. by the central limit theorem), and with disjoint increments independent. The
standard definition takes Bt ∼ N (0, t), so that Bt−Bs ∼ N (0, t− s) for t > s. A very readable
introduction to Brownian motion can be found in Steele’s book [St]; see also [RW, Va].

Now let (Bt)t≥0 denote complex Brownian motion started at some z ∈ C, that is, the real and
imaginary partsB1

t , B
2
t of (Bt) are independent Brownian motions. We will denote the probability

measure for (Bt) by Pz , where the subscript denotes the starting point of the process.
A translation of C of course maps (Bt) to another complex Brownian motion. Also, since the

bivariate normal distribution has rotational symmetry, a rotation of the complex plane maps (Bt)
to another complex Brownian motion. In fact, we can say much more. The following observation,
due to Paul Lévy, essentially tells us that complex Brownian motion behaves as nicely as possible
with respect to holomorphic transformations of their domain.

Theorem 2 ([La, Le]). Let U be a domain in C with z0 ∈ U , and let Bt be a complex Brownian
motion started at z0. Set τU = inf {t ≥ 0 | Bt /∈ U} to be the hitting time of C\U . Let f : U → C
be a non-constant holomorphic map, and define Yt = f(Bt) for 0 ≤ t ≤ τU . Then

Yσ(t), where σ−1(t) =

Z t

0

|f ′(Bs)|2 ds,

has the distribution of a standard Brownian motion.

Proof. We sketch the basic argument given by Lévy [Le], using the heuristic that a stochastic pro-
cess is determined by its behavior locally near every point. The result is then intuitive since locally
near Bt, the map f resembles rotation-dilation by λt = f ′(Bt). Rotations of Brownian motions
are still Brownian motions, so locally Yt looks like |λt|Bt. For c ∈ R, if Bt is complex Brownian
motion, then cBt/c2 = B′′t is another complex Brownian motion, by a simple calculation. Since
Yσ(t) locally looks like |λσ(t)|Bσ(t), σ(t) should locally look like t/|λσ(t)|2, that is, we should set
σ′(t) = 1/|f ′(Bσ(t))|2. This is accomplished if (σ−1)′(t) = |f ′(Bt)|2. 2

In words, the theorem says that a holomorphic map of a complex Brownian motion is an-
other complex Brownian motion, up to a (random) time change. In particular, the curve traced
out by f(Bt), 0 ≤ t ≤ τU , is indistinguishable from a curve traced out by a complex Brownian
motion. Most modern proofs of this result use Itō’s lemma, together with harmonicity of the real
and imaginary parts of ϕ [Ga, La]. Because Brownian motion occurs as the scaling limit of simple
random walk, this result is one of the strongest motivations for the study of conformally invariant
scaling limits coming from general discrete processes.
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A further connection between Brownian motion and harmonic functions lies in the following
result, due to Kakutani [Ka]. The form of the statement below is from Lawler [La], and shows that
Brownian motion gives a solution to the Dirichlet problem.

Proposition 3 ([Ka, La]). Let D ⊂ C be a bounded Jordan domain (not necessarily simply con-
nected), and let f : ∂D → R be bounded and measurable. Let τD = inf{t > 0 : Bt /∈ D} be the
hitting time of C \D. Define u : D → R by

u(z) =


f(z) if z ∈ ∂D.

Ezf(BτD ) if z ∈ D.

Then u is a bounded, harmonic function in D and is continuous at all points z ∈ ∂D at which f is
continuous.

Proof. ‖u‖∞ ≤ ‖f‖∞ < ∞ (by assumption), so u is bounded. To show that u is harmonic, it
suffices to check the mean-value property (see [Ah]),

u(z) =
1

2π

Z 2π

0

u(z + reiθ) dθ,

for any z ∈ D and any r > 0 such thatDr(z) = {|w−z| ≤ r} is contained inD. Let σ denote the
hitting time of C \Dr(z0). By the rotational symmetry of Brownian motion, Bσ has the uniform
distribution on ∂Dr(z) with respect to Pz , so the above equals

Ez(u(Bσ)) = Ez [EBσ (f(BτD ))] = Ez [Ez(f(BτD )|Bσ)] = Ezf(BτD ) = u(z),

where the second equality uses the strong Markov property, and the third is the law of iterated ex-
pectations. This proves that u is harmonic, and the continuity result follows from the boundedness
of f together with the regularity of the domain. 2

Brownian motion is the simplest non-trivial example of the scaling limit of a discrete process,
and yet most known examples of stochastic processes are related to Brownian motion. Kakutani’s
result therefore suggests a very general connection between stochastic processes and complex anal-
ysis.

8.3 Smirnov’s theorem
Smirnov [Sm, Sm] proves conformal invariance of crossing probabilities for the triangular lattice.
The proof approximatesD by a succession of 4-marked discrete domainsGδ in δT : EachG = Gδ
has vertices vi (1 ≤ i ≤ 4) marked on its internal boundary to approximate the Pi; the vertices
demarcate arcs Ai(G) on the internal boundary, and the external boundary can be partitioned into
corresponding arcs A+

i (G).
The main idea is to express crossing probabilities for a 4-marked discrete domain G4 in terms

of separating probabilities for the 3-marked discrete domain G3 = (G; v1, v2, v3) obtained by
dropping v4: For z ∈ δH ∩D (so z ∈ D is the center of a triangle in δT ), we can define

siδ(z) = P(∃ open Ai−1(G3)–Ai(G3) path in δΛ separating z from A+
i+1(G3)),

for i = 1, 2, 3, where the indices are taken modulo 3. That is, siδ(z) is the probability there is
a (simple) open path joining the two boundary arcs meeting vi, separating z from the external
boundary arc opposite vi. In particular, for z lying near v4, s1δ(z) is almost exactly the crossing
probability for the original 4-marked domain.

The discrete derivatives of the siδ satisfy a 2π/3-rotational version of the Cauchy-Riemann
equations. As a result it can be shown that the siδ (extended by interpolation to continuous func-
tions on D) converge uniformly to a “harmonic conjugate triple” (s1, s2, s3) satisfying a mixed
Dirichlet problem on D, which has a unique and conformally invariant solution.

An extremely detailed proof of Smirnov’s theorem, with full justification for the approximation
by discrete domains, is presented in [BR].
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8.4 Conclusion
In fact, crossing probabilities are only the simplest possible example of a conformal invariant.
Smirnov also proves the much more general result that the “full percolation configuration” is
conformally invariant in the scaling limit: If we encode a particular configuration by a collection
of curves (for example, by the external perimeters of connected components), then the probability
laws of these curves are conformally invariant in the scaling limit of the lattice. This shows for
instance that the percolation interface, depicted in Figures 8.3 and 8.4, follows a conformally
invariant probability law in the scaling limit just as Brownian motion does.

Figure 8.3: A portion of the percolation interface Figure 8.4: At a smaller mesh

Proving this result requires more technical work on the convergence of probability laws for
random curves, so we refer the interested reader to the paper by Aizenman and Burchard [AB], and
to Smirnov’s original paper. We note only that this result differs significantly from Lévy’s result
for Brownian motion because the curve is self-avoiding,1 and therefore does not have independent
increments, so the result has surprisingly strong implications. For example, if γ is a conformally
invariant self-avoiding stochastic process which starts on the boundary of a simply connected do-
mainD and travels inD, by the Riemann mapping theorem there is a map ϕwhich takesD\γ[0, t]
conformally ontoD, with γt mapped by the continuous extension to γ0. The curve ϕ(γ[t,∞)) then
follows the same law that the original curve γ followed. This observation is a starting point for the
theory of Schramm-Loewner evolutions; for further reading see [Sc, We].
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tics, Ecole d’Été de Probabilités de Saint-Flour XXXII-2002 (Jean Picard, ed.)).



STUDENT ARTICLE

9
APPLIED MATHEMATICS CORNER

DNA Computation
and Algorithm Design

Shrenik Shah†

Harvard University ’09
Cambridge, MA 02138

sshah@fas.harvard.edu

9.1 Introduction
DNA computing was developed by a team run by Leonard Adleman in a 1994 experiment [Ad].
Since then, scientists have produced a number of developments in this area, both theoretical and
practical. Adelman’s interest in DNA computing arose out of an effort to harness the power of
the massive parallelism present in biological systems; theoretical computer science has developed
parallel algorithms that efficiently speed up deterministic computation.

The key benefit of DNA computation is parallelism—a large number of processes may be
run simultaneously. According to [KGY], just a liter of weak DNA solution can hold 1019 bits of
information, which can encode the states of 1018 processors. All of these processors can be acted
on simultaneously by the primitive operations of DNA computation. Of course, the structure of
this information requires innovative approaches to details that are taken for granted when working
with parallel computer grids. When encoding a problem as DNA, it becomes difficult to control the
computation and extract the output.

DNA computation has been demonstrated in increasingly more powerful trials. In 2000, Yo-
shida and Suyama demonstrated a protocol for solving instances of 3-SATISFIABILITY, a very
important computational problem [YS]. The instance they solved was rather simple, however—a
human could work it out without a computer. A team led by Adleman, who originally developed
DNA computing, managed to solve a 20-variable instance of this problem in 2002 [BCJ+]. This
difficult instance is beyond human capacity, though this is still just a couple seconds’ work for a
modern computer.

The status of DNA computation today is still tentative. DNA computation has not yet exceeded
the power of modern computers. There are several issues, including the expense of the equip-
ment necessary and the error rate inherent to biological processes, that may prove to cripple the
feasability and utility of DNA computation in the long run.

9.2 The DNA Computation Model
To put DNA computation on a concrete framework, the article [Ka] by Lila Kari breaks the process
into smaller steps that can be regarded as primitive operations for the DNA computer.

1. Synthesizing: This stage involves creating a single DNA strand consisting of polynomially
many base pairs.

2. Mixing: This step involves taking the contents of two test tubes and mixing them together in
a third. This step may seem frivolous, but becomes important in the theoretical framework.

†Shrenik Shah, Harvard ’09, is a senior mathematics concentrator with a secondary field in English and
is also pursuing a concurrent masters’ degree in Computer Science. He was a founding member and Articles
Editor of The HCMR. His interests lie in algebraic number theory and complexity theory.
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3. Annealing: This process, also known as hybridization, involves lowering the temperature
of the solution so that two DNA sequences to attach together in a double helix.

4. Amplifying: A reaction known as the Polymerase Chain Reaction (PCR) allows one to
produce a copy of a DNA strand. In [Ka], Kari observes that exponentially many strands
can be produced by repeatedly performing this operation in parallel.

5. Separating: In this step, gel electrophoresis is used to determine the length of a DNA strand.

6. Extracting: A step called affinity purification allows one to find strands that match a given
substring of DNA.

7. Cutting: Certain enzymes allow one to cut DNA at sites with particular patterns of bases.

8. Ligating: This is the opposite of cutting; certain enzymes provide for the ability to connect
DNA strands with certain endings.

9. Substituting: This fairly complex operation allows for insertions, deletions, or substitutions
of sequences of base pairs in a DNA strand.

10. Detecting and Reading: Once a DNA sequence is present in solution, this stage involves
determining the sequence of base pairs that compose that strand of DNA in order.

These processes are standard laboratory procedures used by biologists in performing genetic anal-
yses. It is fortunate that these operations are completely parallelizable.

9.2.1 Cutting, Ligating, and Substitution
The processes of cutting, ligating and substitution are frequently used together to patch together
DNA sequences. The concatenation of two sequences, an operation that is very frequently used in
DNA computation, is actually a sequence of a ligation, a cut, a ligation, a cut, and one simple final
step, as described in [KGY]. Both cutting and ligating use the same enzymes that organisms use
for the maintenance of their own DNA. For example, cutting uses a restriction endonuclease ([Ka]).
The substitution operation is even more complex and requires more steps. From the perspective of
algorithm design, one should regard cutting, ligating, and substitution as the main tools for “string
manipulation” on DNA.

9.2.2 Amplification and the Polymerase Chain Reaction
Cells in the body need to replicate their DNA on a regular basis, and use the enzyme DNA poly-
merase to do this. The Polymerase Chain Reaction (PCR) repeats this process of replication
many times, using the new strands created by the replication to produce many new strands in par-
allel. Through this process, one can acheive exponential growth: one strand becomes two, which
becomes four, and so on. This process, called amplification, thus rapidly produces a very large
number of copies of the original DNA. It occurs in a solution containing chemicals from which
base pairs are constructed, as DNA polymerase cannot create new strands from nothing. At the
end of the amplification, then, the DNA must be separated out from this solution. The actual PCR
requires a series of heating and cooling cycles, and due to its prevalence in biological research, the
lengths and nature of these cycles have been carefully optimized [JK].

9.2.3 Separation and Gel Electrophoresis
Gel electrophoresis is a technique that separates a solution of different DNA strands by length.
Detailed accounts of this procedure are found in [LBM+] and [PRS]. A prepared solution of DNA
strands having known lengths is used as a kind of “ruler” for comparison with the DNA placed in
other wells, and an electric current is passed through a gel in which solutions of DNA strands are
placed in wells on one end. The DNA travels slowly through the gel, moved by the electromotive
force, with shorter strands traveling more quickly than the longer ones due to a negative charge
on the phosphate group of every nucleotide. When the current stops, so does the DNA. In this
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way, the DNA is separated by size, which can be measured by comparison to the “ruler.” In order
to see where the strands ended, one stains the molecules with ethidium bromide, which flouresces
under ultraviolet light. Alternatively, one can attach radioactive labels to the DNA and use radiation
screening techniques.

9.2.4 Extraction and Affinity Purification
In order to find a known DNA sequence, one can use a complementary strand—called a probe in
[PRS]—to “fish” for that sequence. A more complicated procedure can even allow one to search
for two strands in different solutions that match each other, using a method described in [KGY].
The idea behind more general examples of extraction/affinity purification is to use the natural prop-
erty that DNA binds to its complement to search for sequences identical to or similar to a known
sequence. One can, for example, use this technique progressively, testing larger and larger strands
to sequence the DNA, in a manner described in [PRS]. From the perspective of algorithm design,
one should use these techniques to test for the existence of a string in a solution.

9.3 DNA Algorithms
In order to illustrate the ways in which the operations discussed in Section 9.2 can be combined
to carry out a computation, we present an example, the Bounded Post Correspondence Problem
(BPCP). Our focus will be to show two aspects of this process:

• How a problem framed in computational terms can be translated into statements about DNA
strands, in a method that lends itself naturally to using those strands for computation. There
are many important considerations here, including, for example, the use of complementarity
to “search” for a particular sequence in a solution of DNA molecules.

• How the primitive operations fit together and can be used to obtain a much more powerful
procedure than originally imaginable.

The algorithm discussed will address a very important computational problem. The Bounded Post
Correspondence Problem is classified as NP-complete. There are no known efficient algorithms
to solve these problems on a standard computer. The parallelism in DNA computing will become
very concrete in this example.

We first define a few terms that will be essential in what follows. We may use a letter such
as u to stand for a sequence of base pairs, such as GCCTA. Given two sequences, u and v, the
concatenation u · v, usually written simply as uv, is just the concatenation of these two sequences
of base pairs. For example, if u = TA and v = GC , uv = TAGC . Concatenation is made
possible using the primitive operation of ligating.

It will be important to encode numbers as well, since these are essential to most computations.
For this, we use some kind of precursor sequence followed by the number in base 4, with, say,
A = 0, C = 1, G = 2, T = 3. It is also possible to write the number in binary using just, say, A
and T . The details of this encoding are unimportant in what follows; what is important is that each
number has a unique, known encoding.

We next introduce the computational problem, translated into the language of DNA. A detailed
account of this algorithm may be found in [KGY].

Problem. Suppose one is given two collections of DNA strands, u = (u1, . . . , un) and v =
(v1, . . . , vn), where each ui and vi may be an arbitrary sequence of base pairs, as well as an
integer K ≤ n. Do there exist integers i1, . . . , i`, such that 1 ≤ ij ≤ n for j = 1, . . . , `, and
` < K, such that the concatenation ui1 . . . ui` is the same as the concatenation vi1 . . . vi`?

Note that the ij may include repetitions, and that ui and vi are not required to have the same
length.

Example 1. Let u = (AGT ,AGA,TAG,GAG), v = (AG,AA,TTAG,AGGG), andK = 4.
Then u1 · u3 = AGT · TAG = AGTTAG , which is the same as v1 · v3 = AG · TTAG =
AGTTAG . Thus the answer is “yes.”
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Example 2. Let u = (AAGTATAG,GATATCC ,AGTA,CCAA) and v = (AA,TA,GTA,
A). Then every single strand of u is longer than every strand of v, so it is impossible that for some
choices of ij , ui1 . . . ui` can match vi1 . . . vi` , since the first of these is a longer sequence.

The algorithm to solve this problem is as follows:

1. Synthesizing Needed Strands: One needs to produce DNA strands for each ui and vi, as
well as strands encoding the integers i. For reasons that will become clear momentarily, one
should choose an additional sequence we will denote # that is easily recognizable and not
a substring of some concatenation of the ui and vi. The sequence # should also be made
into DNA strands. The # strands will act as markers in strings of base pairs to separate
information. Such a strand is called a bridge by [KGY]. The # stands should be placed
into two test tubes we denote by U and V . Finally, set a counter k to be 1.

2. Creating a Solution of Concatenations: The following routine will be repeated, incrementing
k each time:

We pour the contents of U into n test tubes U1, . . . , Un, and similarly, V into test tubes
V1, . . . , Vn. Recall that this operation is called mixing, and is one of the primitive operations
in Section 9.2. Then, for each test tube Ui, we prepend ui to the beginning of every DNA
strand inside, and append i to the end of every DNA strand inside. The same is done for
each test tube Vi. Finally, we mix the contents of the Ui back into U and the contents of the
Vi back into V .

When k = 1, the result is a number of strands of the form ui1#i1 in U , where 1 ≤ i1 ≤ n,
and similarly strands of the form vi1#i1 in V . After repeating this process for k steps, one
obtains strands of the form ui1 . . . ui`#i` . . . i1, where 1 ≤ ij ≤ n for j = 1, . . . , `, and
similarly for V . Note that we have listed the indices i1, . . . , i` in increasing order, but ui`
is in fact the first strand prepended to #.

3. Checking for Matching Strings: After each run of the routine in Step 2, before repeating the
routine, one checks for matching strings in U and V . This can be done by first using affinity
purification. If a match is found, the algorithm outputs “yes” and halts. Otherwise, the value
of k is incremented. If k = K, the algorithm outputs “no” and halts.

9.4 Algorithm Design
The algorithm in Section 9.3 suggests some general principles regarding DNA algorithm design.
We discuss the relationship of the BPCP to a class of problems called NP, and then propose a
general approach to algorithm design for problems within this class.

9.4.1 Remarks on NP Computation
The class P contains, roughly, the computational problems a computer can solve when restricted
to a polynomial number of time steps, where the polynomial is viewed as a function of the input
size. For example, multiplication is such a computation, and the standard multiplication technique
constitutes a polynomial-time multiplication algorithm.

The class NP consists of problems whose answers are easy to check, but for which it may
be difficult to come up with an answer. For example, one such problem is that of determining,
given a list of linear inequalities in variables xi, whether there exists a solution in integers to all
of these inequalities. It is very easy to check that a proposed solution satisfies the inequalities, but
may be very difficult to determine whether one exists. A working solution is called witness to the
solvability of the problem. Some problems, including the Bounded Post Correspondence Problem,
are complete, and it is known that if one NP-complete problem can be solved in polynomial time,
then every problem in NP also has a polynomial-time algorithm.

The most important characterization of the class NP for our purposes is as follows: Any prob-
lem in NP may be solved by testing all strings of some bounded length n (a set that is exponential
in size) using a single polynomial-time algorithm in hopes of finding a solution. In fact, a general
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result from complexity theory shows that this algorithm can be completely parallelized. In the ex-
ample provided in Section 9.3, the algorithm produced a search space in the first two stages of the
algorithm, and tested them in the third.

Another elegant algorithm to solve an NP-complete problem, SATISFIABILITY, is presented
in [BDLS]. Thus, assuming that the computational problem lies in NP, we may divide the com-
putation into the two processes of creating a test space and testing each strand in this space.

9.4.2 Creating a Test Space
In the computation above, all of the new strands at each stage are prepared at the same time, so
the growth in the total number of strands is exponential in the number of steps. Given a sufficient
quantity of DNA at the outset, one could potentially solve very large instances of the Bounded Post
Correspondence Problem.

In general, it is relatively easy to generate all strings of some length by using a concatenation
technique repeatedly. However, it can be fruitful to create a limited search space, all of whose mem-
bers represent “likely” witnesses to the search problem. In the algorithm presented in Section 9.3,
this restriction was to search for strings obtained by concatenating members from one of the two
collections u and v.

9.4.3 Searching the Test Space
One next needs a technique to determine the result of the computation. Since we now have a space
of test strings, we need to check, for each one, whether it is a witness for the problem. If, for
example, one simply needed to check for the presence of a particular string, one might use try
to match the solution with the complement of a desired strand—this is the extraction technique
discussed in Section 9.2.4. One could also use a more complicated method, described in [KGY], in
order to check whether there are identical strands in a pair of given solutions.

More generally, one can construct a parallelizable test for whether a witness is correct. The
general procedure is somewhat technical, so we merely sketch the idea. If the top node of the
circuit is an OR gate, then (inductively) one creates a test space S where the strings in S each
are complementary strings, forming a “test” for the conditions leading into the OR gate. One also
creates a second test space T of all strings of some length, and any string that binds to an element of
S upon mixing is acceptable. If the node is a NOT gate, where one is trying to take the complement
of a set S of strings, one can create a test space T of all strings of some length, and any string that
fails to bind to an element of S is considered acceptable. In this case, the resulting strings that are
left constitute the complement of the desired set, but one can just permute the alphabet to continue.

9.4.4 Procedural Efficiency
The algorithm in Section 9.3 is particularly efficient because it requires few steps. In general
situations, one might benefit by recasting a computational problem in a manner amenable to easy
searching of the test space, because in practice this process could become excessively complicated.

9.5 Limitations
DNA computation, as the above discussion reveals, has an enormous potential to speed up impor-
tant computations by a factor of 10,000 or more. However, there are limitations to DNA computa-
tion that, while not crippling, suggest that it may not be very useful in practice.

9.5.1 Sequence length
It is very difficult to synthesize sequences much longer than 100–200 base pairs, so either DNA
computation must restrict itself to using short strands, or better synthesis technology must be de-
veloped. Moreover, longer strands are less easily distinguishable by gel electrophoresis, more prone
to error in amplification, and more likely to denature under slight stresses. This is a limitation that
has an analogy in memory limitation with computers, but is far more severe. These errors can be
crippling to many computing applications, so this could potentially threaten the ability of DNA
computation to be useful for certain computational problems even if they are parallelizable. That
said, for medium-sized problems, meaning problems that would take a grid of computers on the
order of a month to 10 years to solve, DNA computing appears to be a very promising approach.



88 THE HARVARD COLLEGE MATHEMATICS REVIEW 2.2

9.5.2 Error rate
Enzymes inherently have their own error rate, and papers such as [KGY] make special modifica-
tions to their algorithms to provide error-correction, usually using additional enzymes that serve
this purpose in actual organisms. It may become the case that certain potential applications of
DNA computation, which cannot tolerate even a small percentage chance of error, will fail for this
reason. On the other hand, the technique of repetition and taking a majority vote of the result can
always shrink a constant-sized error rate to become exponentially small, albeit at the cost of addi-
tional material use. Since the computations can be done in parallel, the repetition might not involve
too substantial an increase in computing time. Researchers have even found certain error-resistant
strands that could be used, for example, as the bridge in the algorithm described above. ([Ba] is a
patent on some such strands.)

9.5.3 Resources
Working with DNA is very expensive, and certain procedures that seem simple in theory require
a great amount of time and care to perform without errors. For a computation with n = 100,
one would need to purchase at least 300 strands at a cost of $7,500 and wait for a lab to produce
the strands. If a problem required running several such algorithms, the costs could very quickly
become unmanagable. It may be that only fully automated processes such as those discussed in
[RWB+] will be able to cost-effectively carry out practical DNA computing algorithms.

9.6 Conclusions
DNA computation, while still in its infancy, could potentially be a new source of computing power.
The largest existing parallel grids contain less than a million computers, while a single liter of DNA
solution can hold the states of 1018 simple processors. If we could eliminate the major contributors
to the cost of DNA contribution, both in time and money, by coming up with easily automated
mechanisms for each type of primitive operation, then DNA computation could potentially outrun
these grids, particularly on computations involving exponential-sized search spaces.

This automation of the procedures for DNA manipulation necessary for DNA computing could
also help biology and chemistry researchers, who often face fairly repetitive work, a large amount
of time and energy. If DNA computation ever becomes economically viable, the investments that
could pour in from companies who specialize in engineering could make some great developments
along the lines of mechanization as well, which could then be used for biological and chemical
research.

Neither previous work on algorithms nor on parallel computation harness the full power of
DNA computation, since the primitive operations for these models are so different. Algorithm
design involves an interesting new set of tradeoffs between space, time, and money. The last
of these considerations does not usually enter into standard algorithm design, but is frequently
important when working with DNA.
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10.1 Introduction
Problem solving has been an important aspect of mathematics in my life. It is the challenge of
tackling a math problem and experiencing the moments of both insight and perplexity associated
with the problem solving process that have drawn me to the field of mathematics.

When asked to write about my “favorite” problem, I found it rather difficult to single out a
particular problem from my repository of interesting mathematics problems. Though I do not have
a single favorite problem, I tried to choose a problem which meets several criteria that make a
mathematics problem interesting. First, the problem should have a simple/elegant solution; at the
same time, the solution should have some key step which is clever and difficult. The ideal problem
is the one that looks intractable upon first sight but, after one has read the solution, should evoke
the response, “Ah, that was simple! Why didn’t I think of that?” Moreover, the problem should
have interesting generalizations or connections to other problems or ideas in mathematics.

Keeping in mind these characteristics of a good problem, I have selected one which I believe
meets the criteria. But first, I will present some background on the problem. The problem was cre-
ated by Reid Barton and submitted as a problem for the 2003 International Mathematical Olympiad
(IMO). Though it was not selected as a question on the IMO, it was included on the IMO Shortlist,
an annual list of twenty to thirty problems which are in contention for a place on the IMO exam.
The problem was first presented to me during the 2004 USA Mathematical Olympiad Summer Pro-
gram (MOSP), where it was given as a problem on a practice test. As I recall, no one was able to
solve it, and I was quite fascinated after learning its clever solution.

10.2 Problem
The problem is stated below:

Problem. Let n be a positive integer and let (x1, . . . , xn), (y1, . . . , yn) be two sequences of
positive real numbers. Suppose (z2, . . . , z2n) is a sequence of positive real numbers such that

z2
i+j ≥ xiyj for all 1 ≤ i, j ≤ n. (10.1)

Let M = max{z2, . . . , z2n}. Prove that„
M + z2 + · · ·+ z2n

2n

«2

≥
“x1 + · · ·+ xn

n

”“y1 + · · ·+ yn
n

”
. (10.2)

The first thing that strikes the reader about this problem is how unconventional it is. The
condition given in (10.1) is certainly bizarre, as is the appearance of M in the inequality. Proving

†Ameya Velingker, Harvard ’10, is a mathematics and physics concentrator living in Currier House. His
academic interests span a wide range of subjects, including number theory, analysis, mathematical physics, and
algorithms. Outside of academics, he enjoys tennis, pool, and Indian classical music.
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inequalities is a common type of question in the olympiad exams, and any experienced olympiad
problem solver has in his arsenal a number of tools to attack such questions, such as AM-GM
inequality, Cauchy-Schwarz inequality, and Muirhead’s inequality (see [HLP]), to name a few. The
trouble with this inequality is that none of the standard tricks seem to work, as we will highlight.

The first questions that emerge regarding the inequality are how strict it is and what equality
cases, if any, there are. Upon quick inspection, one notices that choosing x1 = x2 = · · · = xn =
y1 = y2 = · · · = yn = z2 = z3 = · · · = z2n satisfies (10.1) and yields equality in our inequality.
This equality condition, combined with the nature of the left-hand side of (10.2), is reminiscent of
the Inequality of Arithmetic and Geometric Means (or AM-GM, for short):

Theorem 1 (AM-GM). Given a list of k nonnegative real numbers a1, a2, . . . , ak, the following
inequality holds:

a1 + a2 + · · ·+ ak
k

≥ k
√
a1a2 . . . ak,

with equality if and only if a1 = a2 = · · · = ak.

A simple proof of this inequality can be found in ([HLP]).
Since the equality case of (10.2) appears to require M = z2 = z3 = · · · = zn, we are tempted

to try applying the AM-GM inequality on the left-hand side of (10.2):

M + z2 + z3 + · · ·+ z2n
2n

≥ 2n
√
Mz2z3 . . . z2n.

Thus, proving (10.2) reduces to showing that

n
√
Mz2z3 . . . z2n ≥

“x1 + · · ·+ xn
n

”“y1 + · · ·+ yn
n

”
.

However, the problem is that the above inequality is actually false, in general. One can come up
with numerous counterexamples; for instance, take n = 3 with x1 = y1 = 1, x2 = y2 = 2,
x3 = y3 = 3, z2 = 1, z3 =

√
2, z4 = 2, z5 =

√
6, and z6 = 3, and the above inequality is not

satisfied. Thus, this approach does not work, as AM-GM is too weak for the left-hand side.
Another approach is to use the Cauchy-Schwarz inequality, which in sequence form, states the

following:

Theorem 2 (Cauchy-Schwarz Inequality). Given a1, a2, . . . , an, b1, b2, . . . , bn ∈ R, we have 
nX
i=1

x2
i

! 
nX
i=1

y2
i

!
≥

 
nX
i=1

xiyi

!2

.

The trouble is that the only apparent candidate for application of Cauchy-Schwarz would be
the right side of (10.2), in the form of“x1 + · · ·+ xn

n

”“y1 + · · ·+ yn
n

”
≥
„√

x1y1

n
+ · · ·+

√
xnyn

n

«2

.

However, this inequality goes in the wrong direction, so we are forced to abandon this idea.
Another idea uses a different application of AM-GM, this time on the right side of (10.2). The

right side is a product of two quantities and lends itself to AM-GM:

“x1 + · · ·+ xn
n

”“y1 + · · ·+ yn
n

”
≤

 
x1+···+xn

n
+ y1+···+yn

n

2

!2

=
“x1 + · · ·+ xn + y1 + · · ·+ yn

2n

”2

.
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In light of the above inequality, it suffices to establish

M + z2 + z3 + · · ·+ z2n ≥ x1 + · · ·+ xn + y1 + · · ·+ yn,

which seems to be a simpler inequality. The reader can try some examples and convince himself
that the above inequality appears to be true. Thus, this line of attack seems promising.

However, in attempting to prove (10.2), none of the standard tricks appear to work. The tricky
part lies in using the condition (10.1) effectively. One could reasonably expect to use zk ≥

√
xiyj

for some i+ j and prove some inequality of the form

M +
X√

xiyj ≥ x1 + · · ·+ xn + y1 + · · ·+ yn,

where the sum ranges over certain pairs (i, j). However, the direction of the inequality makes it
nearly intractable to tackle via inequalities such as AM-GM or Muirhead.

Justifiably so, it is at this juncture that a brilliant maneuver is required. First, we take advantage
of the homogeneity of (10.1) and (10.2). Let x = max{x1, . . . , xn} and y = max{y1, . . . , yn}.
Then without loss of generality, one may replace each xi with x′i = xi/x, each yi with y′i = yi/y,
and each zi with z′i = zi/

√
xy without affecting the statement of the problem. Thus, it suffices to

prove (10.2) under the added assumption that max{x1, x2, . . . , xn} = max{y1, y2, . . . , yn} = 1.
Now, the critical ingredient in the proof is the following lemma:

Lemma 3. Let a1, a2, . . . , ak, b1, b2, . . . , bk be positive reals. Suppose that, for any r > 0, the
following property is satisfied:

(i). The number of i for which ai > r is at least the number of i for which bi > r.

Then, a1 + · · ·+ an ≥ b1 + · · ·+ bn.

Proof. Without loss of generality, one can assume that a1 ≤ a2 ≤ · · · ≤ ak and b1 ≤ b2 ≤ · · · ≤
bk. Note that if there exists k for which bk > ak, then, the number of i for which bi > (ak+ bk)/2
is at least n− k + 1 (since i = k + 1, . . . , n satisfy the relation), while the number of i for which
ai > (ak + bk)/2 is at most n − k, contradicting the initial assumption. Hence, we must have
ai ≥ bi for all i, and so, a1 + · · ·+ an ≥ b1 + · · ·+ bn. 2

The lemma seems rather obvious, but it is powerful enough to establish (10.2) and thus provide
a complete solution.

10.3 Solution
We now present a complete solution (provided by [DJMP]) to the problem along these lines:
Proof. Let x = max{x1, . . . , xn} and y = max{y1, . . . , yn}. Then, without loss of generality,
we may assume that x = y = 1, for we can always replace xi by xi/x, yi by yi/y, and zi by
zi/
√
xy without affecting the statement of the problem. It suffices to show that

M + z2 + · · ·+ z2n ≥ (x1 + · · ·+ xn) + (y1 + · · ·+ yn)

because applying the AM-GM inequality to the sum of two terms on the right side of the above
inequality would give us the desired result.

Now, by the previous lemma, we need only show that, for any r > 0, the number of terms
on the left side of (10.2) that are greater than r is at least the number of those on the right side.
Observe that if r ≥ 1, this property clearly holds, as no terms on the right side are greater than r.

Next, suppose r < 1. Let X = {i : xi > r}, Y = {i : yi > r}, and Z = {i : zi > r}. Note
that if xi, yj > r, then zi+j ≥

√
xiyj > r. Thus,

{i+ j : i ∈ X, j ∈ Y } ⊆ Z.

However, note that X and Y are nonempty (since r < 1 and x = y = 1). Thus, if X =
{a1, a2, . . . , al} and Y = {b1, b2, . . . , bm} with a1 < a2 < · · · < al and b1 < b2 < · · · < bm,
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then {a1 + b1, a1 + b2, . . . , a1 + bm, a2 + bm, a3 + bm, . . . , am + bm} ⊆ Z, which shows that
|Z| ≥ |X| + |Y | − 1. But then, we also have that M > r. Hence, there are at least |X| + |Y |
elements on the left side of (10.2) that are greater than r.

This concludes the proof. 2
The proof is everything we want it to be: short, elegant, and clever.

10.4 Further Connections
What I find remarkable about the problem, apart from the simple (albeit difficult) nature of its
solution, is the multitude of connections it has with the field of discrete geometry. As it turns
out, the inequality we have discussed is related to an important inequality known as the Prékopa-
Leindler Inequality:

Theorem 4 (Prékopa-Leindler Inequality). Let 0 < λ < 1, and let f, g, h : Rn → [0,∞) be
measurable functions such that

h(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ

for all x, y ∈ Rn. Then,Z
Rn
h(x) dx ≥

„Z
Rn
f(x) dx

«λ„Z
Rn
g(x) dx

«1−λ

.

Of course, the most striking difference between the given problem and the statement of the
Prékopa-Leindler Inequality is the fact that the former deals with sequences while the latter deals
with functions. In fact, our inequality can be viewed as a discrete specialization of the Prékopa-
Leindler inequality for n = 1 and λ = 1/2.

The Prékopa-Leindler inequality has many important applications, such as probability theory,
optimal mass transportation [Vi], and the theory of diffusion [BL]. Perhaps its most important
consequence is the Brunn-Minkowski inequality (see [Ba]), which can be stated as follows (note
that there exist alternative formulations of the inequality):

Theorem 5. If A and B are compact subsets of Rn, then

|λA+ (1− λ)B|1/n ≥ λ|A|1/n + (1− λ)|B|1/n,
where |X| denotes the Lebesgue measure of X , and λA + (1− λ)B denotes the Minkowski sum
{λa+ (1− λ)b : a ∈ A, b ∈ B}.

The Brunn-Minkowski inequality can be used to provide a simple proof (from [Ba]) of the
famous isoperimetric inequality:

Theorem 6 (Isoperimetric Inequality). Among simple closed bodies of a given volume in Rn,
Euclidean balls have the least surface area.

Proof. Let C ∈ Rn be a compact set with volume equal to that of Bn, the Euclidean ball of radius
1. Then, the surface area of C is given by

|∂C| = lim
ε→0

|C + εBn| − |C|
ε

.

By the Brunn-Minkowski inequality, we have

|C + εBn| ≥
“
|C|1/n + ε|Bn|1/n

”n
≥ |C|+ nε|C|(n−1)/n|Bn|1/n.

It then follows that

|∂C| ≥ n|C|(n−1)/n|Bn|1/n

= n|Bn|.
Using the well-known fact n|Bn| = |∂Bn| (see page 4 of [Ba]), we obtain |∂C| ≥ |∂Bn|, as
desired. 2
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11
Problems

The HCMR welcomes submissions of original problems in any fields of mathe-
matics, as well as solutions to previously proposed problems. Proposers should
direct problems to hcmr-problems@hcs.harvard.edu or to the address on
the inside front cover. A complete solution or a detailed sketch of the solution
should be included, if known. Solutions to previous problems should be directed to
hcmr-solutions@hcs.harvard.edu or to the address on the inside front cover.
Solutions should include the problem reference number, as well as the solver’s name,
contact information, and affiliated institution. Additional information, such as general-
izations or relevant bibliographical references, is also welcome. Correct solutions will
be acknowledged in future issues, and the most outstanding solutions received will be
published. To be considered for publication, solutions to the problems below should be
postmarked no later than April 13, 2009; any problems not solved in this admittedly short
window will be reopened in Vol. 3, No. 1 with a solution submission deadline of Septem-
ber 21, 2009. An asterisk beside a problem or part of a problem indicates that no solution
is currently available.

F08 – 1. Let p, q be two positive integers, and let n be integers such that n ≥ p+ q. Prove that the
following identity holds:

pX
i=0

 
p

i

! 
q

p− i

! 
n+ i

p+ q

!
=

pX
i=0

 
p

i

! 
n

i

! 
n− i
q

!
.

Proposed by Cosmin Pohoata (Bucharest, Romania).

F08 – 2. Let p be an odd prime. For every positive integer n, let

A(n) = 1n + 2n + · · ·+ (p− 2)n and B(n) = 1n + (p− 1)n.

Let {ai}∞i=1 be the sequence defined by a1 = 2, a2 = p2 + 2 and(
an+2 = A(n)an+1 +B(n)an if p - n+ 1,

an+2 = [A(n) +B(n)]an+1 + an if p | n+ 1.

Prove that no an is equal to the product of any p− 1 terms of the sequence {ai}∞i=1.

Proposed by Daniel Campos Salas (Costa Rica).

F08 – 3. Let f : [0, 1]→ R be a differentiable function with continuous derivative such thatZ 1

0

f(x) dx =

Z 1

0

xf(x) dx.

Prove that there exists ξ ∈ (0, 1) such that

f(ξ) = f ′(ξ)

Z ξ

0

f(x) dx.

Proposed by Cezar Lupu (University of Bucharest, Bucharest, Romania).
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F08 – 4. Do there exist functions f, g : R→ R such that

• both are periodic, i.e. there exist nonzero real a, b such that for all x ∈ R, f(x) = f(x+ a)
and g(x) = g(x+ b), and

• their sum is equal to the identity, i.e. for all x ∈ R, f(x) + g(x) = x?

Proposed by Robert Obryk (August Witkowski High School, Krakow, Poland).

F08 – 5. Let ABC be an arbitrary triangle and let I be the incenter of ABC. Let D,E, F be
the points on lines BC,CA,AB respectively such that ∠BID = ∠CIE = ∠AIF = 90◦, and
define the following measurements: ra, rb, rc are the exradii of the triangle ABC, ∆′ is the area
of DEF , and ∆ is the area of ABC. Prove that

∆′

∆
=

4r(ra + rb + rc)

(a+ b+ c)2
.

Proposed by Mehmet Şahin (Ankara, Turkey).

The following two problems from the Spring 2008 issue are being released for one more
issue. The first required correction and clarification, and we are grateful to Daniel Kane,
G2 for bringing these issues to our attention. The second problem below received no
solutions.

S08 – 2. Professor Perplex is at it again! This time, he has gathered his n > 0 combinatorial
electrical engineering students and proposed:

“I have prepared a collection of r > 0 identical and indistinguishable rooms, each of
which is empty except for s > 0 switches all initially set to the ‘off’ position. You
will be let into the rooms at random, in such a fashion that no two students occupy the
same room at the same time and every student will visit each room arbitrarily many
times. Once one of you is inside a room, he or she may toggle any of the s switches
before leaving. This process will continue until some student chooses to assert that
all the students have visited all the rooms at least v > 0 times each. If this student
is right, then there will be no final exam this semester. Otherwise, I will assign a
week-long final exam on the history of the light switch.”

What is the minimal value of s (as a function of n, r, and v) for which the students can
guarantee that they will not have to take an exam?

Proposed by Scott D. Kominers ’09, Paul Kominers (MIT ’12), and Justin Chen (Caltech ’09).

S08 – 4. Consider a, b, c three arbitrary positive real numbers. Prove that

X
cyc

r
b+ c

a
≥ 2

 X
cyc

r
a

b+ c

!
·
s

1 +
(a+ b)(b+ c)(c+ a)− 8abc

4
P
cyc a(a+ b)(a+ c)

.

Proposed by Cosmin Pohoata (Bucharest, Romania).
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Seeing Stars

F07 – 5. For i = 1, . . . , n, let fi : (Z/mZ ∪ {?})n → (Z/mZ ∪ {?})n be given by

fi ((x1, . . . , xn)) =

8>>><>>>:
(?, x2 + 1, x3, . . . , xn) i = 1 and x1 = 1,

(x1, . . . , xi−1 + 1, ?, xi+1 + 1, . . . , xn) 1 < i < n and xi = 1,

(x1, . . . , xn−2, xn−1 + 1, ?) i = n and xn = 1,

(x1, . . . , xn) otherwise,

where ?+ 1 = ?. Find necessary and sufficient conditions on (x1, . . . , xn) ∈ (Z/mZ)n such that
there exists a sequence {ik}nk=1 for which

fin(· · · (fi1((x1, . . . , xn)))) = (?, . . . , ?).

Proposed by Paul Kominers (Walt Whitman HS ’08), Scott D. Kominers ’09, and
Zachary Abel ’10.

Solution by Benjamin Dozier ’12. Call an n-tuple (x1, . . . , xn) ∈ (Z/mZ)n starrable if and
only if there exists a sequence {ik}nk=1 with

(fin ◦ · · · ◦ fi1)(x1, . . . , xn) = (?, . . . , ?). (12.1)

We call any sequence {ik}nk=1 for which (12.1) holds a starring sequence for (x1, . . . , xn).
Call an n-tuple (x1, . . . , xn) uninull if and only if

Pk
j=1 xj = 0 or 1 for 1 ≤ k ≤ n− 1 andPn

j=1 xj = 1. We claim that the starrable n-tuples are precisely those that are uninull.
If m = 1 then the only n-tuple is (0, . . . , 0), which is both starrable and uninull. For the rest

of the proof, we assume m > 1.
We prove the claim by induction on n. For n = 1, the only 1-tuple that is starrable is (1),

which is also the only 1-tuple that is uninull. Assume the claim for n. Let A = (x1, . . . , xn+1) be
a starrable (n+ 1)-tuple with starring sequence {ik}n+1

k=1 . First note that

(i) initially none of the elements of A are stars,

(ii) they all become stars after we have applied a starring sequence of functions, and

(iii) if fj changes the ith element of an n-tuple from a non-star to a star then i = j.

We conclude that the set of all elements of the starring sequence equals the set {1, 2, . . . , n}. In
particular, all of the elements of the starring sequence are distinct.

Now if x1 is not equal to 0 or 1, then (fin ◦ · · · ◦ fi1)(A) will have first element not equal to
?, since the only functions that can change the first element are f1 and f2, but f2 either increments
the first element by 1 or does not affect the first element and f1 changes the first element from 1 to
?. This is a contradiction since A is starrable and {ik}n+1

k=1 is a starring sequence for A; thus x1 is
equal to either 1 or 0.

If x1 = 0 it is easy to see that 2 must precede 1 in the sequence {ik} since f1 only outputs a
sequence that has a star as the first element if the first element of the input is 1 or ? and f2 must
have already been applied for this to be the case. Since f1 affects at most two elements of its input
(n + 1)-tuple, the first and the second, and since f2 is applied before f1, changing the second

97
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element to a star which will remain a star even after f1 is applied, we conclude that f1 only affects
the first element of the (n+ 1)-tuple. Thus (x2, . . . , xn+1) must be a starrable n-tuple, and, by the
inductive hypothesis, also uninull. But then (0, x2, . . . , xn+1) is uninull.

Now we consider the case when x1 = 1. It is easy to see that 2 must come after 1 in the
sequence {ik} because f1 and f2 are the only functions that can affect the first element, but if f2 is
applied before f1 then the first element becomes 2 6= 1, and thus f1 will have no effect. Thus the
effect of f1 will be to change the first element to a star and increase the second element by 1. It then
follows that (x2 − 1, x3, . . . , xn+1) must be a starrable n-tuple, and, by the inductive hypothesis,
also uninull. But then (1, x2, x3, . . . , xn+1) is uninull.

Combining the x1 = 0 and x1 = 1 cases we see that any starrable n + 1 tuple must also be
uninull. Now we prove the converse.

Let (a1, . . . , an) be a starrable n-tuple in (Z/mZ)n with starring sequence i′1, . . . , i′n. Then
(0, a1, . . . , an) is a starrable (n + 1)-tuple with starring sequence i′1, . . . , i′n, 1. Also, (1, a1 −
1, . . . , an) is a starrable (n+ 1)-tuple with starring sequence 1, i′1, . . . , i

′
n.

Now note that if an n-tuple (x1, . . . , xn) is uninull then x1 is either 0 or 1. If the former
holds, then (x2, . . . , xn) is also uninull and thus starrable by the inductive hypothesis. But then,
as discussed above, (x1, . . . , xn) is starrable. Alternatively, if x1 = 1 then (x2 + 1, x3, . . . , xn)
is uninull—thus starrable by the inductive hypothesis—and (x1, . . . , xn) is again starrable by the
previous paragraph. 2
Also solved by Kenfin Tomioka (University of Tokyo, Japan) and the proposers.

Symmetrized Sudoku Kernels

S08 – 1. It is known that there are 6670903752021072936960 square matrices M of order 9 with
entries in {1, . . . , 9} that show valid sudoku grids.1 How many of them have the property that the
symmetric matrix M +M t is positive definite?

Proposed by Noam D. Elkies (Harvard University).

Solution by the proposer. We show that there are 0 such matrices. We prove this by showing that
every such matrix satisfies w(M +M t)wt = 0 where w is the nonzero vector

w = (1, 1, 1,−1,−1,−1, 0, 0, 0).

Let e1, . . . , e9 be the standard unit vectors in R9, and for each of j = 1, 2, 3 let vj = e3j−2 +
e3j−1 + e3j , so

v1 = (1, 1, 1, 0, 0, 0, 0, 0, 0),

v2 = (0, 0, 0, 1, 1, 1, 0, 0, 0),

v3 = (0, 0, 0, 0, 0, 0, 1, 1, 1).

Then for j, k ∈ {1, 2, 3} we have

vjMvtk = vjM
tvtk =

9X
i=1

i = 45,

because vjMvtk and vjM tvtk are the sum of the entries in the (j, k)-th and (k, j)-th 3 × 3 block
of the Sudoku array M . It follows that the vector w = v1 − v2 satisfies wMwt = wM twt = 0,
whence w(M +M t)wt = 0 as claimed.

1The proposer points out that this calculation is detailed in Bertram Felgenhauer and Frazer Jarvis:
Enumerating possible Sudoku grids (2005), http://www.afjarvis.staff.shef.ac.uk/sudoku/
sudoku.pdf, athough it was independently computed by user “QSCGZ” on the rec.puzzle Google group,
thread “combinatorial question on 9x9,” 21 Sep. 2003.
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Remark. We could have used for w any nonzero vector in the 2-dimensional space

V = {a1v1 + a2v2 + a3v3 | a1 + a2 + a3 = 0}.

It follows that if M + M t is positive semidefinite then its kernel contains V . We have not found
any such M , but neither can we prove that none exists. 2
Also solved by Daniel Kane, G2.

Diophantine Squeeze

S08 – 3. Let k ≥ 1 be a natural number. Find all integer solutions to the diophantine equation

x2k+1 + x2k + · · ·+ x2 + x+ 1 = y2k+1.

Proposed by Ovidiu Furdui (University of Toledo).

Solution by the Missouri State University Problem Solving Group. Clearly, (x, y) = (0, 1) or
(−1, 0) are solutions for all k. We claim that there are no other solutions. Note that

2kX
i=0

xi =

(
(x2k+1 − 1)/(x− 1) if x 6= 1

2k + 1 if x = 1

which is positive for all x. Therefore

x2k+1 <

2k+1X
i=0

xi for all x.

If x > 0, then

x2k+1 <

2k+1X
i=0

xi = y2k+1 <

2k+1X
i=0

 
2k + 1

i

!
xi = (x+ 1)2k+1

which is clearly impossible for integers x and y.
If x < −1, we will prove that (−1)n

Pn
i=0 x

i > (−1)n(x + 1)n for n ≥ 2 by induction on
n. Since x < 0, this is clearly true when n = 2. Assume that the result holds when n = m, i.e.

(−1)m
xm+1 − 1

x− 1
= (−1)m

mX
i=0

xi > (−1)m(x+ 1)m.

Multiplying both sides by −(x+ 1) (which is positive), we obtain

(−1)m+1 x
m+2 + xm+1 − x− 1

x− 1
> (−1)m+1(x+ 1)m+1.

Now since x < −1, (−1)m+1(xm+1 − x)/(x− 1) is negative regardless of whether m is even or
odd, so

(−1)m+1
m+1X
i=0

xi = (−1)m+1 x
m+2 − 1

x− 1

> (−1)m+1 x
m+2 + xm+1 − x− 1

x− 1

> (−1)m+1(x+ 1)m+1
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which is what we needed to show.
We are interested in the case n = 2k + 1 where the inequality we just proved becomes

2k+1X
i=0

xi < (x+ 1)2k+1.

As in the case when x > 0, we have

x2k+1 <

2k+1X
i=0

xi = y2k+1 < (x+ 1)2k+1

which is again impossible. 2
Also solved by the Northwestern University Problem Solving Group, Koichiro Nomura (University of Tokyo, Japan) and the
proposer.

E. Equilateralibus Isosceles

S08 – 5. Let ABC be a non-isosceles triangle with ∠A = 60◦. Let H be its orthocenter and I
its incenter. Let Bi and Ci the points such that the equilateral triangles ABCi and ABiC intersect
the interior of ABC. Define Be and Ce similarly, so that ABCe and ABeC are equilateral and
disjoint from the interior of ABC.

Show that the lines throughHI,BiCi andBeCe do not concur, and that the triangle they form
is isosceles.

Proposed by Daniel Campos Salas (Costa Rica).

Solution by Yasuhide Minoda (Tetsuryokukai Institute, Japan). Without loss of generality, we
may assumeAB < AC. LetX = BiCi∩ABe. Since ∠CBCi = ∠BCiA−∠BCCi = π

3
−∠C

and

∠CBCi = ∠CBiCi (because Bi, B,Ci, C are concyclic)
= ∠BiXA (because BiC and AX are parallel),

we have ∠BiXA = π
3
− ∠C.Without loss of generality, we may assume AB < AC.

Let X = BiCi ∩ ABe. Since

∠CBCi = ∠BCiA − ∠BCCi =
π

3
− ∠C

and

∠CBCi = ∠CBiCi (∵ Bi, B, Ci, C are concyclic)

= ∠BiXA (∵ BiC and AX are parallel),

we have

∠BiXA =
π

3
− ∠C. · · · (1)

Next, let Y = HI ∩ ABe and we show ∠IY A = 1
2∠BiXA.

Let S = CH ∩ AB and T = BH ∩ AC. Since

∠BHC = ∠SHT = 2π − π

2
− π

2
− ∠A (consider quadrangle HSAT )

=
2π

3
and

∠BIC = π − (∠IBC + ∠ICB) (consider triangle IBC)

= π − 1
2

(∠B + ∠C)

= π − 1
2

(π − ∠A)

=
2π

3
,

we have ∠BHC = ∠BIC.

∴ B, H, I, C are concyclic

∴ ∠IHT = ∠ICB

(
=

1
2
∠C

)
∴ ∠CUY = ∠HUT =

π

2
− ∠IHT =

π

2
− 1

2
∠C (U = HI ∩ AC)

∴ ∠IY A = ∠CUY − ∠UAY =
π

2
− 1

2
∠C − π

3
=

π

6
− 1

2
∠C

∴ ∠IY A =
1
2
∠BiXA (∵ (1))

- 1 -

Figure 12.1: Diagram for Problem S08–5.

Next, let Y = HI ∩ ABe; we now show ∠IY A = 1
2
∠BiXA. Let S = CH ∩ AB and

T = BH ∩ AC. We have ∠BHC = ∠SHT = 2π − π
2
− π

2
− ∠A = 2π

3
by considering

quadrilateral HSAT , and from triangle IBC it follows that

∠BIC = π − (∠IBC + ∠ICB) = π − 1

2
(∠B + ∠C) = π − 1

2
(π − ∠A) =

2π

3
.
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It follows that ∠BHC = ∠BIC, from which we conclude (letting U = HI ∩AC):

B,H, I, C are concyclic

=⇒ ∠IHT = ∠ICB =
1

2
∠C

=⇒ ∠CUY = ∠HUT =
π

2
− ∠IHT =

π

2
− 1

2
∠C

=⇒ ∠IY A = ∠CUY − ∠UAY =
π

2
− 1

2
∠C − π

6
=
π

6
− 1

2
∠C

=⇒ IY A =
1

2
∠BiXA.

Therefore, if HI , BiCi, and BeCe do not concur, the triangle they form is isosceles.
Now we have to show that HI , BiCi and BeCe do not concur. Draw a tangent line to the

incircle of triangle ABC from Z = HI ∩ BiCi, other than ZBi, and let K be the tangent point.
Clearly ∠BiZI = ∠IZK. Since ∠BiZI = ∠IY A, we have ∠IZK = ∠IY A. Thus ZK and
AY are parallel, so K is the intersection of the incircle of triangle ABC and the segment IA. It is
clear that K 6= A, so we have Z 6= X . This means that HI , BiCi, and BeCe do not concur. 2
Also solved by Koichiro Nomura (University of Tokyo, Japan) and the proposer.
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Hunting for Perfect Euler Bricks

Oliver Knill†

Harvard University
Cambridge, MA 02138

knill@math.harvard.edu

An Euler brick is a cuboid with integer side dimensions a, b, c such that the face diagonals are
integers. The cuboid with dimensions (a, b, c) = (44, 117, 240), for example, is an Euler brick. It
is the smallest Euler brick. If (a, b, c) is an Euler brick, then (ka, kb, kc) is an Euler brick too for
positive integers k. If also the space diagonal is an integer, an Euler brick is called a perfect Euler
brick. In other words, a perfect Euler brick has the properties that all vertex coordinates and vertex
distances are integers.

Whether a perfect Euler brick exists is an open mathematical problem. One would have to find
integer vectors (a, b, c) such thatp

a2 + b2,
p
a2 + c2,

p
b2 + c2,

p
a2 + b2 + c2

are integers. Nobody has found a solution to this system of Diophantine equations nor shown
that solutions do not exist. A infinite subclass of Euler bricks can be parametrized: if u, v, w is a
Pythagorean triple u2 + v2 = w2, then

(a, b, c) = (|u(4v2 − w2)|, |v(4u2 − w2)|, |4uvw|)

is an Euler brick.
Because a2 + b2 + c2 = f(t, s)(s2 + t2)2 if u = 2st; v = s2− t2;w = s2 + t2 and f(t, s) =

s8 + 68s6t2 − 122s4t4 + 68s2t6 + t8, it would suffice to find s, t for which f(t, s) is a square in
order to find a perfect Euler brick. There are many Euler bricks which do not fall into the above
Saunderson parametrization known since 1740. A brute force search 1 ≤ a ≤ b ≤ c ≤ 8000 leads
to 120 Euler bricks. Only 16 of the 120 Euler bricks in 1 ≤ a ≤ b ≤ c ≤ 8000 are prime bricks,
triples (a, b, c) which are not a multiple of a smaller brick. Some of them, like (85, 132, 720) are
not of the above parametrization. To look for perfect Euler bricks of the parametrized type we can
search for integers

p
f(t, s) with the help of a computer. Since perfect Euler bricks might not

exist, one can try to find Euler bricks (a, b, c) for which
√
a2 + b2 + c2 is as close to an integer

as possible. One approach is to linearize the map T :
p
f(t, s) →

p
f(t+ u, s+ v) mod 1

for suitable (u, v) and use a continued fraction expansion of the irrational rotation dT (x) = x +
α mod 1 on [0, 1) to find n for which dTn(x) is close to 0. There exists for example a number
a with 68162 digits, a number b with 56802 digits and a number c with 56803 digits so that the
diagonal length

√
a2 + b2 + c2 is 10−60589 close to an integer. Computations with such large

numbers push the boundaries of computer algebra systems. One has to take square roots of integers
with hundreds of thousands of digits. It turns out that in such ranges, some computer algebra
systems have limitations when projecting algebraic numbers to real valued numbers. While the
quest for Euler bricks might appear an entertainment without applications, the treasure hunt can at
least help to explore the boundaries and limitations of computer algebra systems.

†Oliver Knill got his mathematics degrees at ETH Zuerich in Switzerland and has been in California, Ari-
zona, and Texas before coming to Harvard in 2000. He especially likes to think about mathematical topics
which are accessible to undergraduates and which also allow exploration, visualization, and experimentation
with the help of computers.
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